GABARITO DA PROVA DA OLIMPÍADA MINEIRA DE MATEMÁTICA Nível II

Testes: Cada teste correto 0, 4 pontos.

1	2	3	4	5	6	7	8	9	10
c	b	d	С	Anulada	a	b	d	b	d

A nota dada no problema não pode ultrapassar 2 pontos; Se o aluno utilizar as duas formas de resolução, prevalece a que obtiver mais pontos e a pontuação da outra tentativa é descartada. Qualquer outra resposta, matematicamente correta e que não aparece aqui, deve ser considerada adaptando o gabarito relativo ao problema

Problema 1

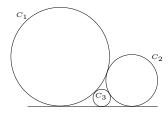
Uma mistura do tipo I contém suco de limão, óleo e vinagre na proporção 1:2:3. Numa segunda mistura, do tipo II, a proporção é 3:4:5. Qual é a proporção de suco de limão, óleo e vinagre numa mistura composta de 1 litro da mistura do tipo I mais 1 da mistura do tipo II?

Solução:

Veja solução do problema 3 do nível I.

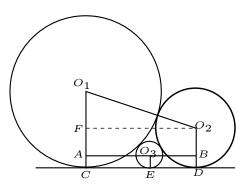
Problema 2

Na figura abaixo, C_1 , C_2 e C_3 são três circunferências tangentes entre si e também tangentes à reta. Sabendo-se que o raio da circunferência C_1 é 9 e o raio de C_2 é 4, calcule o raio da circunferência C_3 .



Solução:

Sejam O_1 o centro da circunferência C_1 , O_2 o centro de C_2 , O_3 o centro de C_3 e r o raio de C_3 . Como C_1 e C_2 são tangentes entre si, o segmento de reta que une O_1 e O_2 é igual a soma do raio r_1 de C_1 e o raio r_2 de C_2 . Ou seja, $\overline{O_1O_2} = 4 + 9 = 13$. Consideremos o retângulo $\overline{CFO_2M}$ da figura. Temos, então que: $\overline{O_1F} = 9 - 4 = 5$.



Usando o teorema de Pitágoras no triângulo O_1FO_2 , temos:

$$\begin{array}{rcl}
\underline{13^2} & = & 5^2 + \overline{CD}^2 \\
\overline{CD} & = & 12
\end{array}$$

O triângulo AO_1O_3 é retângulo, pois $O_3\hat{A}O_1$ é igual a 90^o . Analogamente, BO_2O_3 também é retângulo. O segmento \overline{AC} mede r, assim $\overline{AO_1} = 9 - r$. Já que C_1 e C_3 são tangentes $\overline{O_1O_3} = 9 + r$. Pelo teorema de Pitágoras:

$$(9+r)^{2} = (9-r)^{2} + \overline{CO_{3}}^{2}$$

$$81 + 18r + r^{2} = 81 - 18r + r^{2} + \overline{CO_{3}}^{2}$$

$$36r = \overline{CO_{3}}^{2}$$

$$6\sqrt{r} = \overline{CO_{3}}$$

Analisando, agora, o triângulo O_2BO_3 , temos, analogamente, $\overline{O_2O_3}=4+r$ e $\overline{O_2B}=4-r$. Novamente, pelo teorema de Pitágoras:

$$(4+r)^{2} = (4-r)^{2} + \overline{O_{3}D}^{2}$$

$$16 + 8r + r^{2} = 16 - 8r + r^{2} + \overline{O_{3}D}^{2}$$

$$\frac{16r}{O_{3}D} = \overline{O_{3}D}^{2}$$

$$\overline{O_{3}D} = 4\sqrt{r}$$

Podemos ver na figura que $\overline{CD} = \overline{CO_3} + \overline{O_3D}$. Então:

$$\overline{CD} = \overline{CO_3} + \overline{O_3D}$$

$$12 = 6\sqrt{r} + 4\sqrt{r}$$

$$12 = 10\sqrt{r}$$

$$\frac{12}{10} = \sqrt{r}$$

$$1,44 = r$$

- Concluir que $\overline{O_1F} = 5 \ (0.2 \text{ ponto})$
- Concluir que $\overline{O_2F}$, ou outro segmento equivalente, = 12 (0,5 ponto)
- Demonstrar as duas relações: $\overline{CO_3} = 6\sqrt{r}$ e $\overline{O_3D} = 4\sqrt{r}$ (0,8 ponto)
- Demonstrar somente uma das relações: $\overline{CO_3} = 6\sqrt{r}$ ou $\overline{O_3D} = 4\sqrt{r}$ (0,5 ponto)
- Concluir o problema dando, como resposta, uma relação correta (0,3 ponto)
- Concluir o problema dando, como resposta, o **número** 1,44. (o item anterior não se acumula a esse)(0,5 ponto)

Problema 3

Seja x um número que satisfaz a equação $x^2 + x - 1 = 0$, determine o valor da expressão:

$$x^8 - 7x^4 + 1$$

Solução I:

Da equação $x^2 + x + 1 = 0$, temos que: $x^2 = 1 - x$ Queremos simplificar a expressão: $x^8 - 7x^4 + 1$. Podemos colocar x^4 em evidência. Assim:

$$x^4(x^4 - 7) + 1 = x^2x^2(x^2x^2 - 7) + 1$$

Substituindo x^2 por 1-x de acordo com a primeira relação, temos:

$$(1-x)(1-x)[(1-x)(1-x)-7] + 1 = (1-2x+x^2)(1-2x+x^2-7) + 1$$

Novamente, substituindo x^2 por 1-x:

$$(1-2x+1-x)(1-2x+1-x-7)+1 = (2-3x)(-3x-5)+1$$
$$= -6x+9x^2-10+15x+1$$
$$= 9(x^2+x-1)$$
$$= 0$$

- Mostrar que $x^2 = 1 x$ (0,3 ponto)
- Substituir $x^2 = 1 x$ na expresão $x^8 7x + 1$ uma vez (0,7 ponto)

- Substituir $x^2 = 1 x$ na expresão $x^8 7x + 1$ outra vez (0.5 ponto)
- Substituir $x^2 = 1 x$ novamente e chegar na resposta (0,5 ponto)

Solução II:

Podemos resolver a equação $x^2 + x - 1 = 0$ através da fórmula de Bháskara. Portanto, temos $x_1 = \frac{-1+\sqrt{5}}{2}$ e $x_2 = \frac{-1+\sqrt{5}}{2}$. Consideremos $x_1 = \frac{-1+\sqrt{5}}{2}$.

$$x_1^2 = \left(\frac{-1+\sqrt{5}}{2}\right)^2 = \frac{1-2\sqrt{5}+5}{4} = \frac{3-\sqrt{5}}{2}$$

$$x_1^4 = \left(\frac{3-\sqrt{5}}{2}\right)^2 = \frac{9-6\sqrt{5}+5}{4} = \frac{7-3\sqrt{5}}{2}$$

$$x_1^8 = \left(\frac{7+3\sqrt{5}}{2}\right)^2 = \frac{49-42\sqrt{5}+45}{4} = \frac{47-21\sqrt{5}}{2}$$

Substituindo x_1 em $x^8 - 7x^4 + 1$, temos:

$$x^8 - 7x^4 + 1 = \frac{47 - 21\sqrt{5}}{2} - 7\frac{(7 - \sqrt{5})}{2} + 1 = \frac{47 - 21\sqrt{5} - 49 + 21\sqrt{5} + 2}{2} = 0$$

Se considerarmos agora x_2 teremos, ao fazer os mesmos cálculos: $x^8 - 7x^4 +$ 1=0. Concluímos, então, que o valor de x^8-7x^4+1 é zero.

- Achar as raízes (0,3 ponto)
- Calcular x^2 (0,3 ponto)
- Calcular x^4 (0,3 ponto)
- Calcular x^8 (0,3 ponto)
- Se mostrar que a expressão vale zero para os **dois** valores de x (0,8) ponto)

Se mostrar que a expressão vale zero para apenas um dos valores de x (0,2) ponto)

Solução III:

Se $x^2 + x - 1 = 0$, então: $x^2 = 1 - x$. Para calcular o valor de x^4 basta elevar x^2 ao quadrado. Assim,

$$x^4 = (1-x)^2 = 1 - 2x + x^2 = 1 - 2x + 1 - x = 2 - 3x.$$

Analogamente, para calcular x^8 :

$$x^8 = (2 - 3x)^2 = 4 - 12x + 9x^2 = 4 - 12x + 9 - 9x = 13 - 21x$$

Substituindo os valores de x^2 , x^4 e x^8 na equação:

$$(13-21x) - 7(2-3x) + 1 = 21x - 21x + 13 - 14 + 1 = 0$$

- Obter x^2 (0,3 ponto)
- Obter x^4 (0,7 ponto)
- Obter x^8 (0,5 ponto)
- Concluir e responder corretamente (0,5 ponto)