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Here we impose a (variable)

positive dimensional component

in the singular locus of a foliation

and study the geometry of the subvariety

Σ ⊂ F(n, d)

formed by the transgressors:

(1) dim Σ? degΣ?

(2) ¿If Sing F ⊇ C = curve,

How many isolated singularities do persist?
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The leaves are analytic
curves with tangent line
specified by the direction
attached to the point.
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Here we look at algebraic foliations
of dimension one in Pn.

We may think of
the correspondence

Pn 3 x 7→ line 3 x

defined as follows:

first choose a map

Pn 3 x 7→ f(x) ∈ Pn

and then take the join

〈x, f(x)〉 ⊂ Pn.
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The map f is in turn given by (f0, . . . , fn),

homogeneous polynomials of the same degree,

degfi = d.
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The map f is in turn given by (f0, . . . , fn),

homogeneous polynomials of the same degree,

degfi = d.

The lines 〈x, f(x)〉 and 〈x, g(x) · x+ f(x)〉
coincide

for any homogeneous polynomial

g(x) of degree d− 1.
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The line 〈x, f(x)〉 is undefined wherever

the vectors x, f(x) ∈ Cn+1 are proportional,

i.e., along the locus of points where the matrix(
x0 x1 · · · xn
f0(x) f1(x) · · · fn(x)

)
has rank < 2: xifj(x)− xjfi(x) = 0 ∀i, j.

It can be shown that this singular locus

is nonempty and, if finite, consists of

dn+1−1
d−1 = 1 + d+ · · ·+ dn

points counted with natural multiplicities.
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space of foliations

F(n, d) = P(H0(Pn, TPn(d− 1)))

foliations of dimension one and degree d in Pn

dimF(n, d) = (n+ 1)
(
n+d
n

)
−
(
n+d−1
n

)
− 1.

For general F in F(n, d),

the singular locus is finite.

Goal: force # Sing F =∞.
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Require the foliation F to be singular

along some positive dimensional variety,

e.g., a (variable) curve.

W = some family of curves in Pn;

Σ(W,d) =

{
Sing F ⊃ C

F ∈ F(n, d)
for some C ∈W

}
.

That’s our object of study.



Inspired by recent work of

Mauŕıcio Barros Correa Jr.,

G. N. Costa, Arturo Ulises Fernandez Perez,

and Renato Vidal da Silva Martins,

Foliations by curves with curves as singularities,

arxiv:1209.5618
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foliations singular along a curve

Previous work by G.N.Costa et al. assumed

the foliation to be special along the curve, i.e.,

blowing up the curve produces a foliation

leaving invariant the exceptional divisor.

We give a formula replacing the curve by
any closed subscheme.

Instead of Baum-Bott, we use

Fulton’s residual intersection toolbox.
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isolated residual singularities

Theorem. Let F be a foliation of degree d in P3,

general among those which are singular along a

smooth curve C of degree m and genus g.

For all d >> 0, the scheme of singularities of F

is a disjoint union of C and a finite set, F, with

#F =

∫
c3

(
TP3(d− 1)⊗OX(−E)

)
= d3 + d2 − (3m− 1)d+ 3m− 1 + 2g.
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isolated residual singularities

Similar formulas can be written for foliations in

Pn, n ≥ 3

as well as replacing C by any closed subscheme

of Pn with “known” Segre class.
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isolated residual singularities

Prop. Let F be a general foliation of degree d

singular along an integral, l.c.i. subscheme C.

If d >> 0, the scheme of singularities of F is a

disjoint union,

Sing F = F ∪ C,

with F = finite set of isolated singularities

(to be eventually accounted for.)
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like Bertini:

Lemma. Let C be a closed subscheme of an

integral projective scheme X of dimension n,

with ideal sheaf J . Let E be a locally free

sheaf over X of rank n. Assume

J · E globally generated and H1(X,J · E) = 0.

Then a general section in

H0(X,J · E) has scheme of zeros supported on

C union finitely many points away from C.
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Lemma. Notation and hypotheses as in the

previous lemma, assume further that C is a

local complete intersection. Then the scheme

of zeros of a general section in H0(X,J · E) is

equal to a disjoint union of C and a finite

subscheme of X.

Proof. Previous lemma ⇒ for general

σ ∈ U = H0(X,J · E),

its set of zeros is a disjoint union of C and some finite set.

We must show that the scheme of zeros of σ

coincides with C at all points on C.
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; map of vector bundles U × C
ρ
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Pick y ∈ C and a global section σ ∈ U = H0(X,J E).

Let I be its ideal of zeros. Let e1, . . . , en be a local basis of E .
Write a local expression

σ = f1e1 + · · ·+ fnen, fi ∈ JOX,y, (⇒ Iy = 〈f1, . . . , fn〉).

Now ρy sends σ to the element σ′ of Hy such that,
for each coordinate functional e∨i , we get

σ′(e∨i ) = fi + J 2
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y in Jy/J 2

y .

Since Iy = 〈f1, . . . , fn〉 ⊆ OX,y,

the image of the map σ′ is Iy + J 2
y modJ 2

y .

Now, if the section σ lies in the open subset of U
which is mapped to the surjective elements of

H = Hom(E∨|C,J /J 2),

we get Iy + J 2
y = Jy ⊆ OX,y,

whence Nakayama obtains Jy = Iy for y ∈ C.

This shows . . .
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I(C) · I(F )

due to co-maximality.
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#F =
∫
c3(TP3(d− 1)⊗OX(−E))

= d3 + d2 − (3m− 1)d+ 3m− 1 + 2g.

In the case of a line,

m = 1, g = 0,; d3 + (d− 1)2 + 1.

For instance, a foliation of degree d = 2,

general among those which are singular along a line

admits 10 additional isolated singularities.
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(= 24 − 1) expected singularities for a general

foliation of degree 2 in P3.

For example, the foliation defined by

x0(x0 − x1 − x2) + x1x3, x1(x1 − x2 − x3)− x0x2,

x0(x1 − x0 − x3), x1(x0 + x1)

presents 10 distinct isolated singularities

besides the line x0 = x1 = 0.
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For a general foliation F in Pn of degree >> 0

singular along a subvariety C ⊂ Pn of dimension

0 ≤ m < n− 1, we’ll have a finite residual

scheme F ⊂ Sing F ,

#F =

∫
X
cn(TPn(d− 1)(−E)) =

n∑
0

(−1)icn−i(TPn(d− 1))Ei=

∫
Pn cn(TP

n(d− 1)) +
∑

(−1)i−1segn−m−i(C,Pn)ciTPn(d− 1))

at least under suitable hypotheses, e.g.,

C integral, l.c.i.
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presence of a

Veronese

P2 ⊂ P5 : d5 + d4 + d3 − 39d2 + 75d− 36;

Segre

P1 × P2 ⊂ P5 : (d3 + 3d2 − 24d+ 32)(d− 1)2.

Next,
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Noether-Lefschetz theory tells us that

any curve in a very general surface F

of degree degF ≥ 4 in P3 is of the form

F ∩G for some surface G ⊂ P3.
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enumerate the few

Those not so general F which contain,

say some (variable) line,

or conic, or twisted cubic, etc, yield

subvarieties of the appropriate PN = |OP3(d)|.

There are polynomial formulas for their degrees.
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Enumeration of surfaces containing

an elliptic quartic curve, (Proc.AMS)

J.A.D.Maia, A.Rodrigues Silva, I.V. & F.Xavier,

Enumeration of surfaces . . . curve of low degree, J. P. A. Algebra, 2013
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Similarly, a very general 1-dim foliation in P3

admits only finitely many singularities.

Given a family W of curves in P3,

consider the subvarieties

Σ(W,d) ⊂ F(3, d)

in the projective space of foliations of degree d,

defined by the condition that the singular locus

contain some member of W .
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We show that the degree of Σ(W,d) ⊂ F(3, d)

is given by a polynomial qW(d) for all d >> 0.

We make it explicit in a few examples.

These examples seem to suggest that the

degree of the polynomial qW(d) is equal to

twice the dimension of W , though we only

manage to bound it by thrice that dim.
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This is reminiscent of the recent work around

Göttsche’s conjecture on the polynomial behaviour

of the numbers of singular curves on surfaces.



S. Kleiman, R. Piene, Enumerating singular curves

on surfaces, Cont. Math. 241, 209-238, 1999.
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————-, Node polynomials for families: methods

and applications, Math. Nachr. 271, 69-90, 2004.

math.AG/0111299.
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Y. Tzeng, A Proof of the Göttsche–Yau–Zaslow Formula,

J. Differential Geom. 90 (2012), No. 3, 439-472.

M. Kool, V. Shende and R. Thomas, A short proof of the

Göttsche conjecture, Geometry & Topology 15 (2011)

397-406

Jun Li, Yu-jong Tzeng, Universal polynomials for singular

curves on surfaces, arXiv:1203.3180v1
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down to earth example

singularities ↔ n+ 1 eigenspaces.

Impose one singular line ;

need an eigenvalue with geometric multiplicity = 2.

n = 3; G(2, 4)× P14⊃{(V,A) |A|V = c · IV .}
(for some c)||

W

↘
P14 ⊃ Σ(W, 1)

||
{A |A|V = c · IV for some V ∈W}



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus

S // // C4 // // Q



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus

S // // C4 // // Q

S(1)
��

�
�
�
�
�
�

// // C4(1)
��

A

// // Q(1)

(
diagram over

G(2, 4)× P14

)



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus

S // // C4 // // Q

S(1)
��

�
�
�
�
�
�

// // C4(1)
��

A

// // Q(1)
**

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

(
diagram over

G(2, 4)× P14

)



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus

S // // C4 // // Q

S(1)
��

�
�
�
�
�
�

// // C4(1)
��

A

// // Q(1)
**

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

u := c4(Hom(S,Q(1))) = cycle with support

{(V,A) |AV ⊆ V }︷ ︸︸ ︷
dimV=2

(
diagram over

G(2, 4)× P14

)



Σ(W, 1) = {A |A|V = c · IV for some V ∈W}

find degΣ(W, 1) via Schubert Calculus

S // // C4 // // Q

S(1)
��

�
�
�
�
�
�

// // C4(1)
��

A

// // Q(1)
**

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

u := c4(Hom(S,Q(1))) = cycle with support

{(V,A) |AV ⊆ V }︷ ︸︸ ︷
dimV=2

(=zeros of S → Q(1))

(
diagram over

G(2, 4)× P14

)
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// // Q(1)
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u := c4(Hom(S,Q(1))) = [{(V,A) |AV ⊆ V }]
H := Hom(S, S)

/
〈I〉 ;

v := c3(H(1)) = cycle with support the multiples of identity;

⇒ u ∩ v = [{(V,A) |A|V = cIV (for some c)}] ; 20h3 =

cycle of codimension 3 and degree 20 in P14

supported on the set of foliations of degree 1
singular along some variable line.
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main result

The previous example can be generalized,

replacing the Grassmannian of lines by

any closed irreducible subvariety, W , of a

Hilbert scheme of subschemes in Pn satisfying

F the general member of the family parameterized

by W is integral and of positive dimension.
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Let Σ(W,d) ⊂ F(n, d) be the locus of
foliations whose scheme of singularities

contains some member of W.

Then for all d >> 0, Σ(W,d) is a closed
irreducible subvariety of F(n, d) of dimension

dimF(n, d) + dimW−((n+ 1)PW(d)−PW(d− 1))

and degree given by a polynomial qW(d) of
degree ≤ n dimW.
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proof

We mimic arguments from

S.C.Coutinho-J.V.Pereira (Crelle v.594, 2006)

and Cukierman-Lopez-V (Proc.AMS).

Consider the correspondence

Σ̃(W,d) ⊂W × PN
||

{(C,F) ∈W × PN |C ⊆ Sing F}

Σ̃(W,d) is a projective subbundle with total
dimension equal to the expected one ∀ d >> 0.
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Now the main point is that the number of
linearly independent conditions is dictated by

the Hilbert polynomial PW(d) for d >> 0.
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Grosso modo, the condition that
a given C lie in Sing F is linear on F .

Now the main point is that the number of
linearly independent conditions is dictated by

the Hilbert polynomial PW(d) for d >> 0.

We have in fact

Σ̃(W,d) = P(Ud),

projectivization of an explicit vector bundle

Ud → W , which fits into an exact sequence,

Ud // // H0(TPn(d− 1))×W // // Vd.



Ud // // H0(TPn(d− 1))×W // // Vd.



Ud // // H0(TPn(d− 1))×W // // Vd.

The degree of the image of Σ̃(W,d) = P(Ud),

Σ(W,d) ⊂ PN = P
(
H0(TPn(d− 1))

)
,

can be calculated as a

top-dimensional Segre class of the

vector bundle Ud.
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Σ̃(W,d) = P(Ud) ⊂W × PN

p1↙ ↘ p2

W Σ(W,d) ⊂ PN

degΣ(W,d) =
∫
PNh

m ∩ [Σ(W,d)] (m = dim Σ(W,d))

= 1
δ

∫
PN h

m ∩ (p2)?[Σ̃(W,d)] (δ = deg p2)

= 1
δ

∫
W(p1)?((h̃)

m
∩ [Σ̃(W,d)])

= segw Ud = cwVd (w := dimW )

that is, the top-dimensional Chern class of Vd,
provided we ensure that δ = 1.
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Proposition. The map Σ̃(W,d) −→ Σ(W,d)

is generically injective ∀ d >> 0.

Proof. Let C correspond to a general point in
W and let F be general in the fiber of

Σ̃(W,d) −→ W.

By hypothesis, C is integral and dimC > 0.

We must show that C is the sole member of W

which appears as a subscheme of Sing(F).
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Arguing as in Bertini, it can be shown that

Sing(F) \ C is finite.

Thus, if C ′ is a member of W appearing in SingF ,

then C ′red = C ∪F , disjoint union with F finite.

Since C is integral and the Hilbert polynomials

are the same, it follows that F = ∅ and C ′ = C

as schemes, hence δ = 1. 2
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Show next how to compute the vector bundles
Ud, Vd.

Let Γ ⊂ Pn ×W be the total space of the family W.

Let q : Pn×W → W be induced by projection.

The Euler sequence reads
(F) OPn // // OPn(1)⊗ Cn+1 // // TPn

1 � //

∑
xi ⊗ ei.

Take the tensor product of (F) by OPn(d− 1);
pullback to Pn ×W and restrict over Γ :
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Get the diagram of sheaves over Pn ×W ⊃ Γ,

OPn(d− 1) // // OPn(d)⊗O⊕(n+1)
W

// // TPn(d− 1)

OPn(d− 1)|Γ // //

��
��

OPn(d)⊗O⊕(n+1)
Γ

// //

��
��

TPn(d− 1)|Γ

��
��

Γ ⊂ Pn ×W q−→ W

Take direct image to W ; we find the diagram
of vector bundles /W ,
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��

��

��

��
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Ud := ker ε // // q?(TPn(d− 1))
ε

// // Vd := q?(TPn(d− 1)Γ)

||
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exact, as soon as R1q?(OΓ(d− 1))=0;



H0(Pn,OPn(d− 1))×W // // q?(OPn(d− 1)|Γ)
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��

H0(Pn,OPn(d))⊗ Cn+1 ×W // // q?(OPn(d)|Γ)⊗ Cn+1

��
��

��
��

Ud := ker ε // // q?(TPn(d− 1))
ε

// // Vd := q?(TPn(d− 1)Γ)

||
H0(Pn, TPn(d− 1))×W

exact, as soon as R1q?(OΓ(d− 1))=0;

Serre’s vanishing ensures this holds ∀ d>>0.
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The fiber of Vd over C is

H0(C, TPn(d− 1)|C).

The fiber q?(OPn(d))C = H0(C,OC(d)),

which has rank PW(d).

Similarly, the fiber (Ud)C is the space of

ξ ∈ H0(Pn, TPn(d− 1)) such that ξ|C = 0.

We have Σ̃(W,d) = P(Ud).

(The previous exact sequences will be used to

calculate the equivariant Chern classes of Vd in

the examples below.)
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Next, we proceed to show that ∀ d >> 0

• degΣ(W,d) is a polynomial qW(d) and

• bound the degree of qW(d).

Recall

degΣ(W,d) =

∫
W

cwVd (w = dimW ).

Since the vector bundle

Vd = q?(TPn(d− 1)|Γ)

is a direct image, we are in a situation similar
to the one in Cukierman-Lopez-V.
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In short, the Chern class cwVd is a weighted

polynomial of degree w = dimW on the

coefficients of the Chern character of Vd.

By Grothendieck-Riemann-Roch,

that Chern character is in turn the direct image

of the product of the Todd class of Pn

by the Chern characters of the sheaves

OΓ and TPn(d− 1).

The latter involves d only in degree ≤ n.

Hence, cwVd is a polynomial in d of degree ≤ wn.
2
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1
32

(
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3

)
(81d5 + 189d4 + 177d3 + 123d2 + 22d+ 48),

degree of the subvariety Σ(W,d) ⊂ PN

consisting of foliations in P3 of degree d

singular along some (variable) line.

(-: d = 1 ; 20 :-)

We also remark the degree of qW(d),

3 + 5 = 2dimW.
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d
2
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impose a conic

degΣ(W,d) =
(
d
2

) 3∏
2

(3d2 − d+ 2i)
(

16767d10 + 41553d9 − 28080d8+

102018d7 + 5019d6 − 75063d5 + 221822d4 − 69180d3

+216d2 + 184928d− 96000
)/

(212 · 32 · 5 · 7).

Similarly, for the case W = { plane cubics }:
degΣ(W,d) =

(
d−1

2

) 9∏
4

(3d2 − 7d+ 2i)
(

18225d10 − 70227d9 − 4698d8

+641154d7 − 1960839d6 + 2883213d5 − 1781136d4 − 722428d3

+1736640d2 − 356160d− 506880
)/

(219 · 34 · 5 · 7 · 11).

(Compare deg’s and dim’s.)



W := {twisted cubics}

We use the fixed points as detected in Norway; (seemywww)

(d− 1)
(

443753235d23 − 1211154039d22 − 3260272437d21 + 34746612039d20

−98418674160d19 + 22215446370d18 + 674998119198d17

−1675105129746d16 − 2797122199293d15 + 32236140084573d14 − 122958699518769d13

+310213229195931d12 − 588389379312598d11 + 886855102748712d10−

1108254006266728d9 + 1205114928345920d8 − 1193890014288160d7

+1074684757123712d6 − 794759284927104d5 + 364343257677056d4 + 40601134718976d3

−214458571542528d2 + 155901732618240d− 44144787456000
)/

(217 · 34 · 52 · 7 · 11).



W :={ elliptic quartic curves }:
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W :={ elliptic quartic curves }:
Thanks again to Norwegian expertise; (seemywww).(

18952050714507d32 − 402650304098544d31 + 4068442396247976d30 − 24192653251673664d29+

76641743386171764d28 + 54079300221748704d27 − 2162076040303606728d26+

13911138159415859232d25 − 55198672640285530590d24 + 145172858185740767616d23−

164119957419188973384d22 − 898572428296095163104d21 + 8656020890522166395988d20−

49606694102881107827040d19 + 229318845087825770880648d18 − 892072135543708672264608d17

+2935046281982494425016043d16 − 8169445433432572905171600d15+

19233872248453319380635744d14 − 38256461382438793679095648d13+

64057906551130942045761568d12 − 89645418699366386921507456d11+

103477420624760229650806528d10 − 96182930477294969421534720d9+

68608721839949610428148480d8 − 33239241009346928398690304d7+

5892547595845147628589056d6 + 5384901470937843027034112d5−

4079350127605443776348160d4 − 686377277683583753650176d3 + 2676759456544640005570560d2

−1719866455882845703372800d+ 418630239595794530304000
)/

(228 · 35 · 52 · 72 · 11 · 13).
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higher dimension

Some experiments seem to indicate that, for a

family W of dimension w of closed subschemes

of dimension k in Pn, the subvariety of F(n, d) of

one-dim foliations singular along a member of W ,

has degree given by a polynomial qW(d) of degree

(k + 1)w.



quadric surfaces in P4:

(
d
2

)(
d+3
2

) 5∏
1

(
4d3 + 3d2 − 7d+ 6(i+ 3)

)
(

12517376d20 + 139198464d19 + 481345536d18

+257327104d17 − 742813184d16 + 2949311488d15 +

6409660608d14 − 11158877696d13

−1826835065d12 + 44161688960d11 − 33681870799d10 −
34375182142d9 + 108574356973d8 − 60730636684d7

+33199026071d6 + 39432298290d5 − 106330304700d4 +

284976484632d3 − 227173139136d2 + 155118789504d−
49884595200

)/
(223 · 317 · 5 · 7 · 11 · 13).



(:- T HANKS FOR LIST ENING :-)


