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DEGENERATE SINGULARITIES OF ONE DIMENSIONAL

FOLIATIONS

V. FERRER AND I. VAINSENCHER

Abstract. We give formulas for the degrees of the spaces of holomorphic foli-

ations in the complex projective plane with a dicritical singularity of prescribed
order. Blowing up such singularity induces, generically, a foliation with only

finitely many leaves tangent to the exceptional line; we find the degree of the

locus defined by imposing a leaf of total contact with the exceptional line.

Introduction

Holomorphic foliations of degree d on the complex projective plane P2 are de-
fined by nonzero twisted 1–forms, ω =

∑
aidzi, with homogeneous polynomials

ai(z0, z1, z2) of degree d+ 1, up to scalar multiples, satisfying
∑
aizi = 0. The

parameter space of foliations of degree d is a projective space PN (cf. 2).
The purpose of this work is to compute the dimensions and degrees of the sub-

varieties of PN corresponding to foliations displaying certain degenerate singular-
ities. Given an integer k ≥ 2 we study the locus, Mk ⊂ PN , of foliations with
a singularity of order ≥ k. These are foliations defined in local coordinates by a
holomorphic 1–form that can be written as ω = akdx+ bkdy + higher order terms,
with ak(x, y), bk(x, y) homogeneous polynomials of degree k. It turns out that Mk

is the birational image of an explicit projective bundle over P2. This enables us to
find a formula for the degree of Mk.

Another interesting type of non-generic foliation presents a so called dicritical
singularity of order k: require akx + bky to vanish. This defines a closed subset
Dk ⊂Mk.

A characteristic feature of a foliation with a dicritical singularity is best phrased
in terms of the foliation induced on the blowup of P2 at the singular point: through
all but finitely many points on the exceptional line, the leaf is transversal. We
say a foliation with such a singularity has the property of maximal contact (MC
for short) if some leaf of the induced foliation has a contact of order k with the
exceptional line. Thus we may consider the subvariety Ck ⊂ Dk consisting of
dicritical foliations with MC.

Requiring a leaf of a foliation to be tangent to a line at a given point defines a
hyperplane in the parameter space PN . Therefore, the degree of each of the loci
Ck ⊂ Dk ⊂ Mk ⊂ PN can be rephrased loosely as the number of foliations with a
singularity of the specified type and further tangent to the appropriate number of
flags (point, line) in P2. It turns out that the degrees of Ck, Dk,Mk are expressed
as explicit polynomials in k, d.

Key words and phrases. holomorphic foliations, singularities, enumerative geometry.
The authors were partially supported by CNPQ.
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This fits into the tradition of classical enumerative geometry: answers to ques-
tions such as determining the number of plane algebraic curves that have singular-
ities of prescribed orders, besides passing through an appropriate number of points
in general position, are often given by “node” polynomials. There is also a wealth of
results and conjectures on generating functions for counting suitably singular mem-
bers of linear systems of curves on surfaces, cf. Götsche [5], Kleiman and Piene [11].
We hope similar results can be formulated in the setting of foliations.

1. The space of foliations

The main reference for this matterial is Jouanolou [8]. A projective 1-form of
degree d in P2 is a global section of Ω1

P2(d+ 2), for some d ≥ 0.
We denote by Sd the space Symd(C3)∨ of homogeneous polynomials of degree d

in the variables z0, z1, z2. We write ∂i = ∂/∂zi, thought of as a vector field basis
for C3. The dual basis will also be written as dz0, dz1, dz2 whenever we think of
differential forms. Recalling Euler sequence

(1) 0→ Ω1
P2(d+ 2)→ OP2(d+ 1)⊗ S1 → OP2(d+ 2)→ 0

and taking global sections we get the exact sequence

0→ H0(P2,Ω1
P2(d+ 2)) −→ Sd+1 ⊗ S1

ιR−→ Sd+2 → 0

where ιR(
∑
aidzi) =

∑
aizi is the contraction by the radial vector field. Thus a

1-form ω ∈ H0(P2,Ω1
P2(d+ 2)) can be written in homogeneous coordinates as

ω = a0dz0 + a1dz1 + a2dz2

where the ai’s are homogeneous polynomials of degree d+ 1 satisfying

a0z0 + a1z1 + a2z2 = 0.

The space of foliations of degree d in P2 is the projective space

(2) PN = P(H0(Ω1
P2(d+ 2)))

of dimension
N = 3

(
d+2

2

)
−
(
d+1

2

)
− 1 = d2 + 4d+ 2.

We have Ω1
P2(d+ 2) = Hom(T P2,OP2(d+ 2)). Any nonzero

(3) ω : T P2 −→ OP2(d+ 2)

induces a (singular, integrable) distribution of dimension one subspaces given by
p 7→ kerωp. A nonzero multiple of ω yields the same distribution.

1.1. Singularities. Twisting (3) by OP2(−d− 2) we get a map
ω ⊗ idOP2 (−d−2) : T P2(−d− 2) → OP2 .

The singular scheme of ω is defined by the ideal sheaf image of the above map. If
finite, it consists of ∫

P2 c2(Ω1
P2(d+ 2)) = d2 + d+ 1

points counted with multiplicity. In local coordinates, say around 0 = [0, 0, 1] ∈ P2,
writing ω = adx + bdy the singular scheme of ω is given by the ideal 〈a, b〉. We
say 0 is a nondegenerate singularity if the jacobian determinant |∂(a, b)/∂(x, y)| is
nonzero. A generic 1-form has only nondegenerate (hence isolated) singularities;
see [8, p. 87]. The order of the singularity 0 is ν0(ω) = min{order0(a), order0(b)}.
It can easily be checked that this is independent of the choice of coordinates.
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In fact, if I is the ideal sheaf of the singular scheme, then for each p ∈ P2 there
is a unique nonnegative integer k such that the stalk at p satisfies Ip ⊂ mkp and

Ip 6⊂ mk+1
p , where m denotes the ideal sheaf of p. Thus, setting E = Ω1

P2(d+ 2), we
see that the order of the singularity p is at least k if and only if f the image of ω in
the quotient E/mkpE is zero.

1.2. Jet bundles. The preceeding discussion entices us to recall the notion of jet
bundles associated to a vector bundle, cf. [6, 16.7], [13]. Let E be a vector bundle
over a smooth projective variety X. For k ≥ 0 the kth-jet bundle associated to E ,
denoted Pk(E), is a fiber bundle over X with fiber over x ∈ X given by

Pk(E)x = (OX/m
k+1
x )⊗ Ex

where mx is the maximal ideal of the point x.

For each k ≥ 0 we have exact sequences

(4) 0→ Symk+1 Ω1
X ⊗ E → Pk+1(E)→ Pk(E)→ 0.

Consider the evaluation map

ev : X ×H0(X, E)→ E

given by ev(x, s) = (x, s(x)). The map ev lifts to natural maps fitting into the
following commutative diagram:

(5) X ×H0(X, E)
evk // Pk(E)

��
Pk−1(E) .
''

evk−1

OOOOOOOOOOO

We think of evk(s) as the Taylor expansion of s truncated at order k+1. We include
for the reader’s convenience the following

1.3. Lemma of global generation. Notation as in (5) above, given k, replacing
E by a sufficiently high twist E ⊗ Lm by an ample line bundle L, we have that
(i) the map evk is surjective.
(ii) Set Wx = {s ∈ H0(X, E) | (evk−1)x(s) = 0}. Then

(evk)x(Wx) = (Symk Ω1
X ⊗ E)x.

Proof. Let J be the ideal of the diagonal of X×X. Consider the projection maps
pi : X ×X → X, i = 1, 2. We have the exact sequence of sheaves over X ×X,

(6) J k+1
� _

��

J k+1
� _

��
J k

����

� � // O

����

// // O/J k

J k/J k+1 � � // O/J k+1 // // O/J k.
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Tensoring by p?2E ⊗ Lm and taking (p1)? yields the diagram

(p1)?(J k+1p?2E ⊗ Lm)
� _

��

(p1)?(J k+1p?2E ⊗ Lm)
� _

��
(p1)?(J kp?2E ⊗ Lm)

����

� � // (p1)?(p
?
2E ⊗ Lm)

evk����

evk−1// // (p1)?((O/J k)⊗ p?2E ⊗ Lm)

Symk Ω1
X ⊗ E ⊗ Lm // // Pk(E ⊗ Lm) // // Pk−1(E ⊗ Lm).

The vertical central arrow above fits into the exact sequence

(p1)?(p
?
2E ⊗ Lm)

evk
−→ Pk(E ⊗ Lm) −→ (R1p1)?(J k+1p?2E ⊗ Lm)

||
X ×H0(X, E ⊗ Lm).

Surjectivity of evk now follows upon killing (R1p1)?(J k+1p?2E⊗Lm). This is possible
for m >> 0 because L is ample (cf. [7, ch. III, Thm. 8.8, p. 252]). Similarly, (ii)
follows from the identification Wx = (p1)?(J kp?2E ⊗ Lm)x. The right hand side
is the fiber of ker evk−1 at x due to exactness of the middle row together with
cohomology and base change ([7, Thm. 12.11, p. 290]). �

1.4. Singularities of order k. We apply the previous lemma to E = Ω1
P2 ,L =

OP2(1). In order to simplify the notation we set for short in the sequel

Ω = Ω1
P2 and V := H0(Ω(d+ 2)).

1.5. Remark. Fix k ≤ d+1. It follows from the explicit calculation ofHi(P2,Ω(d+
2)) (Bott’s formula [1], [12, p. 8]) that the conclusions of the previous lemma hold
for m = d+ 2. Hence

(i) evk is surjective for k ≤ d+ 1 and
(ii) evk(ker(evk−1)) = Symk Ω⊗ Ω(d+ 2).

The lemma below is included for lack of a convenient reference.

1.6. Lemma. Let X be a projective variety of dimension m. Let E be a vector
subbundle of the trivial bundle X × Cn+1. Let Z ⊆ Pn be the image of the projec-
tivization P(E) ⊂ X × Pn under the projection map q : X × Pn → Pn. Assume

P(E)
q→ Z generically injective. Then the degree of Z is equal to the degree of the

Segre class smE.

Proof. Write e := rank E ; u := dimZ = m + e − 1. Set h = hyperplane class of
Pn and likewise H = c1OE(1). We have degZ =

∫
hu ∩ [Z] =

∫
hu ∩ q?[P(E)]. By

the projection formula, we get degZ =
∫
Hu ∩ [P(E)]. Pushing forward to X the

assertion follows from [4, §3.1, p. 47]. �

We describe now the locus Mk ⊂ PN of foliations of given degree d that have
some singularity of order ≥ k.

1.7. Proposition. For 1 ≤ k ≤ d+ 1, denote by

Mk = {[ω] ∈ PN | [ω] has a singularity of order at least k}.
Then we have

codPN Mk = k(k + 1)− 2
and

deg(Mk) =

∫
P2

c2(Pk−1(Ω(d+ 2))).
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Proof. Define
Mk = ker

(
evk−1 : P2 × V → Pk−1(Ω(d+ 2))

)
.

In view of the previous remark, we see thatMk is a vector subbundle of V of co-rank
equal to rankPk−1(Ω(d+ 2)). By construction, the projective bundle associated to
Mk is the incidence variety,

P(Mk) = {(p, [ω]) ∈ P2 × PN | p is a singularity of [ω] and νp(ω) ≥ k}.

Let q : P(Mk) → PN denote the projection on the second factor. We have Mk =
q(P(Mk)). It is easy to check that q is generically injective. It follows from the
lemma just above that deg(Mk) =

∫
s2(Mk)∩[P2]. Since s2(Mk) = c2(Pk−1(Ω(d+

2))), the assertions now follow from (4). �

Using the proposition we may now derive an explicit formula for the degree of
Mk ⊂ PN . See also the script in § 5. We find

1.8. Corollary. The degree of Mk is given by

1

2
k(k + 1)

[
(k2 + k − 1)

(
d2 − (2k − 3)d

)
+

1

4
(4k4 − 8k3 − 7k2 + 21k − 6)

]
.

�

2. Dicritical singularities

If ω ∈ H0(P2,Ω(d+ 2)) and p is a singularity of ω, we say that p is dicritical if
the local expression of ω is

ωp = akdx+ bkdy + h.o.t
with akx+ bky = 0. In the case k = 1, we say that p is a radial singularity.

Observe that this condition is equivalent to

ωp = f(x, y)(ydx− xdy) + h.o.t

for some homogeneous polynomial f of degree k − 1.
The main result of this section is the following.

2.1. Proposition. For all 1 ≤ k ≤ d there exists a subbundle Dk of Mk → P2

such that
(i) P(Dk) = {(p, [ω]) ∈ P2×PN | p is a dicritical singularity of [ω] with νp(ω) ≥ k}.
(ii) Set Dk = q(P(Dk)). Then the codimension of Dk in PN is k(k + 2) and
(iii) the degree of Dk is the coefficient of the degree two part of

c(Pk−1(Ω(d+ 2)))c(Symk+1 Ω⊗ OP2(d+ 2)).

2.2. Remark. Before proceeding to the proof of the proposition, we explain an
invariant way of expressing the condition that a singularity be dicritical. Suppose
that E is a vector bundle of rank 2. Then for all k ≥ 1 we have the following exact
sequence (e.g., see [3, Appendix 2, A2.6.1.]),

0→
2
∧ E ⊗ Symk−1 E → Symk E ⊗ E

Pk→ Symk+1 E → 0,

where the first map is given by

(a ∧ b⊗ c) 7→ (ac⊗ b)− (bc⊗ a)

and the second by multiplication, i.e.,

a⊗ b 7→ ab.
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Say x, y form a local basis for E . Then for ak, bk ∈ Symk E , we have that akx+bky =
0 in Symk+1E if and only if f there is some c ∈ Symk−1 E such that ak ⊗ x+ bk ⊗ y
is equal to the image of x ∧ y ⊗ c, to wit, xc⊗ y − yc⊗ x.

2.3. Construction of Dk. We have the following diagram,

Symk Ω⊗ Ω(d+ 2)

��

��
Pk(Ω(d+ 2))

����

44 44
evk

Mk
// //

Jk

66 66

V // // Pk−1(Ω(d+ 2))

The map Jk defined in the previous diagram is surjective in view of remark 1.5. We
obtain the surjective map

(7) Mk

Tk

33 33
Jk // Symk Ω⊗ Ω(d+ 2)

Pk // Symk+1 Ω(d+ 2).

Explicitly, on the fiber over p ∈ P2 the map is as follows:

Tk(p, ω) = (p, akx+ bky)

where
ωp = akdx+ bkdy + h.o.t.

is the local expression of ω in a neighborhood of p. Set

(8) Dk := ker
(
Mk

Tk // // Symk+1 Ω(d+ 2)
)
.

Thus Dk is a vector bundle of rank = rank(Mk)− (k+ 2). Recalling 2.2, we see
that the projective bundle associated to Dk is the incidence variety,
P(Dk) = {(p, [ω]) ∈ P2 × PN | p is a dicritical singularity of [ω] with νp(ω) ≥ k}.
It can be shown that q is generically injective. Using 1.6, we see that the degree of
Dk is given by

∫
s2(Dk) ∩ [P2]. This finishes the proof of the proposition 2.1. �

A formula for the degree of Dk can be made explicit.

2.4. Corollary. The degree of Dk is given by

(k + 1)2

[
1

2
(k4 + k2 − 2k + 2)− (k3 + k2 + k − 1)d+

1

2
(k2 + 2k + 2)d2

]
.

�
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2.5. Remarks. (i) We have by construction the following diagram:

Symk−1 Ω⊗
2
∧ Ω⊗ OP2(d+ 2)

��
Dk //

dk

22

0 ++VVVVVVVVVVVVVVVVVVVVVVV Mk
Jk //

Tk

))RRRRRRRRRRRRRRRR Symk Ω⊗ Ω(d+ 2)

Pk

��
Symk+1 Ω⊗ OP2(d+ 2).

By definition of Dk we obtain a map

dk : Dk → Symk−1 Ω⊗
2
∧ Ω⊗ OP2(d+ 2)

given in the fibers by dk(p, ω) = f(x, y)dx ∧ dy where f is a polynomial of degree
k − 1.

(ii) In the case k = 1 we have

ω = λ(ydx− xdy) + h.o.t.

with λ ∈ C i.e., a radial singularity. Thus 2.1 and 2.4 give formulas for the codi-
mension and degree of the space of foliations with a radial singularity:{

codPN D1 = 3;

degD1 = 10d2 − 8d+ 4.

For d = 1 we find 6. Looking at Jouanolou’s classification, [8, p. 14] presently we
have N = 7 and D1 must coincide with the (projection of a) Segre image of reducible
foliations, P̌2×P2 → P7. In fact, up to a projective change of coordinates we have
w = z(xdy − ydx).

(iii) In the case k = d+ 1 the map Jd+1 :Md+1 → Symd+1 Ω1
P2 ⊗Ω(d+ 2) is no

longer surjective: its image is Symd Ω⊗
2
∧ Ω1

P2 ⊗ OP2(d + 2). Indeed, suppose that
ω is a form of degree d+ 1 which has p as singularity of order d+ 1. Then a local
expression of ω is

ωp = ad+1dx+ bd+1dy.
However, this form defines a projective form of degree d+ 1 in P2 if and only if

ad+1x+ bd+1y = 0,

i.e., if p is a dicritical singularity. Therefore we can write ωp = f(x, y)(ydx−xdy) for

some homogeneous polynomial f of degree d. That is, ωp ∈ Symd Ω1
p⊗

2
∧ Ω1

p. Hence
Td+1 (see (7)) is the zero map. This shows that Md+1 = Dd+1 . Summarizing, for
a foliation of degree d, any singularity of order d+ 1 is automatically dicritical.

3. Maximal contact

Consider a degree d form ω ∈ H0(P2,Ω(d + 2)) with a dicritical singularity at
p = [0 : 0 : 1] of order k ≥ 2. Denote by

π : C̃2 → C2
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the blowup of C2 at p. Write ω in local coordinates (x, y) around 0 ∈ C2 as

ω =

d+1∑
j=k

ajdx+ bjdy

where aj , bj are homogeneous polynomials of degree j. The blowup of C2 at (0, 0)

C̃2 = {(x, y), [s : t] | tx = sy} ⊂ C2 × P1

is covered by the usual two charts

V0 = {((x, y), [1 : t]) | tx = y} ' {(x, t) | t, x ∈ C},

V1 = {((x, y), [s : 1]) | x = sy} ' {(s, y) | s, y ∈ C}.

Over V0 we have dy = tdx+ xdt. Thus

π∗(ω)(x, t) =

d+1∑
j=k

aj(x, tx)dx+ bj(x, tx)(tdx+ xdt) =

d+1∑
j=k

(aj(x, tx) + tbj(x, tx))dx+ xbj(x, tx)dt =

xk
d+1∑
j=k

xj−k [(aj(1, t) + tbj(1, t))dx+ xbj(1, t)dt] .

Since p = (0, 0) is a dicritical singularity we have

ω = f(x, y)(ydx− xdy) + h.o.t

where f is a polynomial of degree k − 1; so ak = yf(x, y), bk = −xf(x, y).
Hence we may write

π∗(ω)(x, t) = xk(xbk(1, t)dt+ xα) = xk+1(−f(1, t)dt+ α)

where α is a 1-form. The strict transform of ω is

(9) ω̃ = −f(1, t)dt+ (ak+1 + tbk+1)dx+ xα1

for some 1-form α1. Over V0 the exceptional divisor is given by x = 0, and by (9)
we have

ω̃ ∧ dx = −f(1, t)dt ∧ dx+ xα1 ∧ dx.

The leaves of ω̃ passing through each point (0, t0) with f(1, t0) 6= 0 are transverse to
the exceptional divisor. On the other hand, the points (0, t0) such that f(1, t0) = 0
but aren’t singularities of ω̃ are exactly the points of tangency of leaves of ω̃ with
the exceptional divisor.

Next, we study the relationship between the multiplicity of t0 as a zero of f(1, t)
and the order of tangency of the leaf of ω̃ with the exceptional divisor at (0, t0).

3.1. Lemma. The intersection multiplicity of a leaf of ω̃ with the exceptional
divisor at a point (0, t0) is the multiplicity of t0 as zero of f(1, t) plus one.
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Proof. We may assume t0 = 0. By (9) we have that ω̃ has the following form

ω̃ = (−f(1, t) + xF (x, t))dt+ (g(t) + xG(x, t))dx

with f(1, 0) = 0. Observe that g(0) 6= 0 because we are assuming that p := (0, 0) is
a nonsingular point of ω̃. Let h(x, y) = 0 be a local equation for a leaf of ω̃ through
(0, 0), where h is a non constant holomorphic function. We have

(ω̃ ∧ dh)(p) = −g(0)∂h∂t (p)dt ∧ dx = 0.

Hence ∂h
∂t (p) = 0 6= ∂h

∂x (p). Therefore, we can find a local analytic parameterization
of h = 0 of the form y = t, x = γ(t) defined in a neighborhood of t = 0 such that{

γ(0) = 0,

γ′(0) = ∂h
∂t (p)

/
∂h
∂x (p) = 0.

Since (γ(t), t) parameterizes a leaf of ω̃ we find that

f(1, t) + γ(t)F (γ(t), t) + γ′(t)(g(t) + γ(t)G(γ(t), t)) ≡ 0.

Hence, repeatedly differentiating with respect to t yields

γ(j)(0) = 0 ∀ j ≤ r =⇒ γ(r+1)(0) =
∂rf
∂rt (1, 0)

g(0)
.

Now, γ has intersection multiplicity n with x = 0 at (0, 0) if the first non-vanishing
derivative of x(γ(t), t) = γ(t) at 0 is precisely n. Thus the intersection multiplicity
of h = 0 with x = 0 is n if and only if t = 0 is a zero of order n− 1 of f(1, t). �

From the above Lemma we have that if ω ∈ Dk, then the order of tangency of
the leaves of ω with the exceptional divisor is ≤ k, and is equal to k precisely in
the case that f = lk−1 where l is a polynomial of degree one.

3.2. Degree of the MC locus. Recall that we say that a form ω has the MC
property if it has a dicritical singularity p of order k such that the strict transform
of ω under the blowup of p has a leaf with maximal order of contact with the
exceptional divisor of the blowup.

Consider a form with a dicritical singularity of order k,

ω = f(x, y)(ydx− xdy) + h.o.t.

(i.e. f is a polynomial of degree k − 1). Then ω has the MC property if and only
if f(1, t) = (t− t0)k−1 or f(s, 1) = (s− s0)k−1, i.e.,

f(x, y) = (ax+ by)k−1 for some a, b ∈ C.
Therefore we can parameterize the set of forms that has the MC property as

follows. The Veronese-type map Ω→ Symk−1 Ω induces an embedding

vk : P(Ω⊗
2
∧ Ω⊗ OP2(d+ 2))→ P(Symk−1 Ω⊗

2
∧ Ω⊗ OP2(d+ 2))

which is locally given by vk(p, l⊗ (ydx− xdy)) = (p, lk−1 ⊗ (ydx− xdy)). In order
to simplify the notation set

E := Ω⊗
2
∧ Ω⊗ OP2(d+ 2)

and

Ek := Symk−1 Ω⊗
2
∧ Ω⊗ OP2(d+ 2).

Define
Vk := vk(P(E)) ⊂ P(Ek).
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3.3. Lemma. The codimension of Vk in P(Ek) is k − 2 and its cycle class is

[Vk] = uHk−2
k + vhHk−3

k + wh2Hk−4
k ∩ P(Ek)

where Hk (resp. h) denotes the relative hyperplane class of P(Ek) (resp. P2) and

u = (k − 1),
v = − 1

2 (k − 1)(k − 2)(3k + 2d− 5),
w = 1

8 (k − 2)(k − 1)2(9k2 − 47k + 72 + (12k − 60)d+ 12d2).

Proof. It is clear that cod(Vk) = dimP(Ek)− dimP(E) = k− 2. Recalling that the
Chow ring A∗(P(Ek)) is generated by Hk and h (see [4, Thm. 3.3., p. 64]) we can
express

(10) [Vk] = uHk−2
k + vhHk−3

k + wh2Hk−4
k ∩ P(Ek).

With this notation, the relative hyperplane class of P(E) is H2, and we have
v∗k(Hk) = (k − 1)H2. Consider the following diagram:

P(E)

ρ
##GG

GG
GG

GG
G

vk // P(Ek)

π

��
P2

To find the coefficient u we multiply by h2Hk both sides of (10) to obtain:

h2Hk ∩ vk∗(P(E)) = uh2Hk−1
k ∩ P(Ek).

By the projection formula we have:

h2vk∗((k − 1)H2 ∩ P(E)) = uh2Hk−1
k ∩ P(Ek).

Applying π∗ to this last equation we find

(k − 1)h2 ∩ ρ∗(H2 ∩ ρ∗P2) = uh2π∗(H
k−1
k ∩ π∗P2),

(k − 1)h2 ∩ s0(E) ∩ P2 = uh2 ∩ s0(Ek) ∩ P2.

Hence u = k − 1. Next, multiplying (10) by hH2
k we get

hH2
k ∩ vk∗(P(E)) = uhHk

k ∩ P(Ek) + vh2Hk−1
k ∩ P(Ek).

Again the projection formula yields

h(k − 1)2 ∩ vk∗(H
2
2 ∩ P(E)) = uhHk

k ∩ P(Ek) + vh2Hk−1
k ∩ P(Ek).

Applying π∗ we obtain

h(k − 1)2ρ∗(H
2
2 ∩ P(E)) = uhπ∗(H

k
k ∩ π∗P2) + vh2π∗(H

k−1
k ∩ π∗P2),

(k − 1)2hs1(E) ∩ P2 = ((k − 1)hs1(Ek) + vh2s0(Ek)) ∩ P2,

hence v = (k − 1)2s1(E)− (k − 1)s1(Ek).
Similarly we obtain w = [(k − 1)3s2(E)− us2(Ek)− vhs1(Ek)] ∩ [P2].
The lemma follows from the calculation of the Segre classes of E and Ek. Observe

that
2
∧ Ω = OP2(−3), so that E = Ω(d− 1) and Ek = Symk−1 Ω⊗OP2(d− 1). These

classes can be computed with schubert [9]. �
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By Remark (2.5) we have a rational map ψk as in the diagram

(11) ψk : P(Dk) //___
OO

� ?

P(Ek)
OO

?�

ψ−1
k (Vk) Vk

Set Γk := ψ−1
k (Vk) ⊂ P(Dk). Thus

Γk = {(p, [ω]) | ωp = lk−1(ydx− xdy) + h.o.t for some l ∈ Ωp}.
The image

Ck := q(Γk) ⊂ PN
parameterizes the space of foliations with the MC property.

3.4. Lemma. We have
(i) codP(Dk) Γk = codP(Ek) Vk = k − 2.
(ii) Let Z ⊂ P(Dk) denote the indeterminacy locus of ψk. Then

codP(Dk)(Z) = k.

Proof. Since ψk (cf. diagram 11) is induced by a surjective map of vector bun-
dles, its fibers have the same dimension n. Therefore dim Γk = dimVk + n, and
dimP(Dk) = dimP(Ek) + n. Hence the equality for the codimension follows:

codP(Dk)(Z) = rank(Symk−1 Ω⊗
2
∧ Ω(d+ 2)) = k.

�

We may now find the degree of the locus of dicritical foliations with maximal
contact with the exceptional line.

3.5. Proposition. (i) The codimension of Ck in PN is

codPN Ck = k2 + 3k − 2.

(ii) The degree of Ck is given by the formula

(k − 1) 1
2

[
1
4 (4k6 + 20k5 − 15k4 − 66k3 + 211k2 − 218k + 112)

−(2k5 + 7k4 + 2k3 + 24k2 − 49k + 44)d+ (k4 + 2k3 + 10k2 + k + 16)d2

]
.

Proof. First of all, the restriction q|Γk
is generically injective. For instance, it can

be checked that the 1-form

ω = (z
d−(k−1)
2 (z0 + z1)k−1 + zd0 + zd1)(z1dz0 − z0dz1)

has p = [0 : 0 : 1] as its unique singularity with order k and p is a reduced point of
the fiber (q|Γk

)−1([ω]). To compute the codimension observe that

codPN Ck = codPN Dk + codP(Dk) Ck =
k(k + 2) + k − 2 = k2 + 3k − 2.

Put n = dim Γk. By lemma 3.4 (ii) we have that dimZ < n, hence An(Z) = 0.
Using the excision exact sequence (cf. [4, Prop. 1.8, p. 21])

An(Z)→ An(P(Dk))→ An(P(Dk) \ Z)→ 0,

we deduce that
An(P(Dk)) ' An(P(Dk) \ Z).
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Therefore, using that the class ψ∗k[Vk] is known in P(Dk) \ Z, we can do the com-
putations in An(P(Dk)). Recalling (11) ψk is a linear projection, we have that
ψ∗kHk = H := c1(OP(Dk)(1)). Therefore

degCk = deg q∗Γk =

∫
Hn ∩ [Γk] =

∫
Hn ∩ ψ∗k[Vk] =∫

(uHn+k−2 + vhHn+k−3 + wh2Hn+k−4) ∩ [P(Dk)] =(Lemma 3.3) ∫
(uHr+1 + vhHr + wh2Hr−1) ∩ [P(Dk)],

where r = rankDk. Applying p1∗ and using the definition of Segre class [4,
§3.1, p. 47], we see that what we are calculating is:∫

(us2(Dk) + vs1(Dk) + ws0(Dk) ∩ [P2].

From Lemma 3.3 we know the values of u, v, w. The classes s1(Dk) and s2(Dk) are
known from (8) and the beginning of the proof of 1.7. We finish using schubert [9].

�

4. Concluding remarks

It is worth mentioning that for foliations of degree d ≥ 2, the scheme of singu-
larities completely determines the foliation. Moreover, the schemes of d2 + d + 1
points that can occur as singular scheme of a foliation are known, cf. [2]. It would
be nice to work out the enumerative geometry of the loci of foliations with scheme
of singularities subject to collisions in the spirit of [10].

The reader is invited to check that formulas similar to 1.8, 2.4 and 3.5 can
be written down for an arbitrary surface. Precisely, given a smooth, projective
surface X, we may fix an ample divisor class h and look at the space of foliations
PN = P(H0(Ω1

X ⊗ O((d+ 2)h))) for d� 0. The degree of Mk can be written as
1
72k(k + 1)

[
(k − 1)(k + 2)(4k2 + 4k + 3)c21 + 12(2k + 1)(k2 + k − 1)(d+ 2)hc1+

6(k2 + k + 4)c2 + 36(k2 + k − 1)(d+ 2)2h2
]

where we set for short ci = ciΩ
1
X . Substituting in the Chern numbers for P2,

(h2 = 1, c1h = −3, c2 = 3) reproduces 1.8. We include a script below.

5. schubert/maple script

with(schubert): DIM:=2; omega:=bundle(2,c); f:=expand(Symm(k,omega));

g:=convert(%,list); s0:=sum(1, ’j’=0..k-1): s0:=factor(%);

s1:=sum(’j’, ’j’=0..k-1): s1:=factor(%); s2:=sum(’j^2’, ’j’=0..k-1):

s2:=factor(%); s3:=sum(’j^3’, ’j’=0..k-1): s3:=factor(%);

G:=g;l:=[ ]: for i to nops(g) do if has(g[i],k^3)then print(i):

l:=[op(l),i]: g[i]:=subs(k^3=s3,g[i]) fi od;g;

G:=g;l;for i to nops(g) do if not i in l then

if has(g[i],k^2)then print(i):l:=[op(l),i]: g[i]:=subs(k^2=s2,g[i])

fi fi od;g; G:=g;l;for i to nops(g) do

if not i in l then if has(g[i],k) then print(i):

l:=[op(l),i]: g[i]:=subs(k=s1,g[i]) fi fi od; g;l; g[2]:=s0;

collect(convert(g,‘+‘),t); omega*o((d+2)*h); mtaylor(%%*%,t,3);

chern(2,%); factor(%); #P2:c1^2=9*h^2,c2=3*h^2,c1=-3*h2

subs(c1^2=9*h^2,%); subs(c2=3*h^2,%); subs(c1=-3*h,%); print(indets(%));

factor(%); subs(h=1,%); collect(%,d);
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