
ENUMERATION OF TROPES

I. VAINSENCHER?

Abstract. Singularities of the plane sections of a general surface
in three-space are well known, and counted; in particular, all plane
sections are reduced. Fixing integers d, k, we give formulas for the
degree of the locus of surfaces of degree d admitting a plane which
is tangent along some curve of degree k.

Dedicated to Prof. Heisuke Hironaka
on his 80th birthday.

1. introduction

We look for surfaces special in the sense that some plane section is
tangent along a curve. We say a surface of degree d has a k−trope,
if a plane is tangent to S along a curve of degree k. The curve or its
supporting plane will be referred to as a k−trope.

Tropes have entered my vocabulary upon reading D. Eklund, [1]. He
calls a plane in P3 a trope of a quartic surface if their intersection is an
irreducible conic counted with multiplicity two (d = 4, k = 2).

Fixing integers d, k, we show how to get formulas for the degree of
the locus of surfaces of degree d admitting a k−trope. We also indicate
how to handle the similar question in higher dimension. For historical
accounts and further motivation on the subject,the reader may consult
W. Fulton’s tome [2], S. Kleiman and R. Piene [4] and the references
therein.

2. parameter space

As customary we apply the toolbox of intersection theory to a suit-
able parameter space. Let us start by finding the dimension of the
family of surfaces of degree d with a k−trope. Such a surface has an
equation of the form

(1) S := xF (x, y, z, w) +G(y, z, w)2H(y, z, w) = 0,

for some polynomial F of degree d−1 and polynomials G,H such that
degG = k, degH = d− 2k. Count constants: We have fixed the plane
x = 0; now the freedom of G,H in (1) is
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of surfaces of degree d with a k−trope. The previous discussion glob-
alizes to yield a suitable projective bundle.

Write Fi = H0(P3,OP3(i)) for the space of homogeneous polynomi-
als of degree i. There are exact sequences of vector bundles over the
dual projective space P̌3=P (F1):

OP̌3(−1) // // P̌3 ×F1
// // F1

and

OP̌3(−1)⊗Fk−1
// // P̌3 ×Fk

ρ // // Fk.
Here Fk denotes the vector bundle with fiber the space of equations
of plane curves of degree k. The homomomorphism ρ is defined by
restriction of elements of Fk to a (varying) plane in P3. The kernel
consists of multiples of the equation of a plane.

Set
k′ = d− 2k, X = P(Fk) .

Note that X parameterizes the family of plane curves of degree k in
P3. Form the diagram of vector bundles over X,

(3) OP̌3(−1)⊗Fd−1
��

��

OP̌3(−1)⊗Fd−1
��

��
F̃d,k

����

// // X ×Fd

����
OFk

(−2)⊗Fk′ // // Fd
where the bottom row amounts to squaring the equation of a plane
curve of degree k and multiplying by all equations of complementary

degree k′ = d − 2k. We have just defined a vector subbundle F̃d,k of
the trivial bundle X ×Fd, with rank

rk F̃d,k =
(
d+2

3

)
+
(
d−2k+2

2

)
,

thus obtaining

dimP(F̃d,k) = 1 +
(
k+2

2

)
+ rk F̃d,k = Nd,k.

Since P(F̃d,k) is a projective subbundle of the trivial bundle X×P (Fd),
we get the diagram of maps

(4) P(F̃d,k)
π

))TTTTTTTTTTTTTTTTT

��

⊂ X × P (Fd)

��

X Yd,k ⊂ P (Fd)
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The image Yd,k of π is the desired locus of surfaces of degree d with
a k−trope. We wish to determine degYd,k.

3. surfaces with a trope are singular

Calculating the gradient of S in (1), we find

∇S = x∇F + F∇x+G(G∇H + 2H∇G).

We see that ∇S vanishes along

(5) x = F = G = 0,

usually k(d− 1) singular points.

3.1. test d = 2, k = 1. Clearly, if a quadric surface has a 1–trope, it
is a cone. Hence it carries infinitely many 1–tropes. In this case, the
map π in (4) shrinks dimension.

3.2. test d = 3, k = 1. An apparently sad thing is that the image of

P(F̃3,1) in P(F3) ' P19 must be contained in the locus of cubic surfaces
with at least 2 singular points, which is 17-dimensional. As the map

P(F̃3) → P(F3) can be shown to be generically injective we should
realize that for the general cubic surface with two singularities, there
is a plane section which cuts a double line. Is this correct?

Let Σ2
d ⊂ P(Fd) be the locus of surfaces with 2 double points. The

degree of Σ2
d is given by

2(d− 1)2(d− 2)(4d3 − 8d2 + 8d− 25)

cf. [5]. For d = 3, we get 280. As observed before, Y3,1 sits in Σ2
3 and

is of the same dimension. It turns out that the calculation of degYd,k
done below gives the same answer for d = 3. Hence Y3,1 = Σ2

3. For
d ≥ 4 however, Yd,1 has dimension strictly smaller than the locus of
surfaces with d− 1 singularities.

4. calculation of the degrees

4.1. Lemma. For fixed k ≥ 1 and all sufficiently big d, the map

π : P(F̃d,k) → Yd,k
is generically injective.

Proof. We show first that the tangent map of π is injective at a general
point, hence dimYd,k = Nd,k. Set as before k′ = d− 2k and

X ′ = P(Fk)×P̌3 P(Fk′)
There is a diagram over X ′ similar to (3), obtaining exact sequences

OP̌3(−1)⊗Fd−1
// // F ′d,k // //

��

��

OFk
(−2)⊗OFk′

(−1)
��

��
OP̌3(−1)⊗Fd−1

// // F̃d,k // // OFk
(−2)⊗Fk′
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Pick (x,G,H) ∈ X ′ with x ∈ P̌3 and G,H equations of curves of
degrees k, k′ in the plane x. The fiber of F ′d,k over (x,G,H) is the
subspace of Fd consisting of all S as in (1). In particular, moding out

by the equation of the plane x yields a multiple of G
2
. It follows that

F ′d,k sits inside the pullback of F̃d,k to X ′. We get a diagram of maps
of projective bundles

P(F ′d,k)

ψ
))TTTTTTTTTTTTTTTTTT

��

⊂ P(F̃d,k)×X X ′

��

X ′ P(F̃d,k) ⊂ P(Fd)×X.

The map ψ : P(F ′d,k) −→ P(F̃d,k) is an isomorphism. Given a vector
space V , recall the usual identification T(v)P(V ) = V/(v) for the tan-
gent space of the associated projective space P(V ) at a point (v); it
comes from Euler exact sequence, to wit

OP(V )
// // V ⊗OP(V )(1) // // TP(V ). .

Thus a tangent vector at (x,G,H, F ) ∈ P(F ′d,k) can be written as
(L′, G′, H ′, F ′) with

L′ ∈ F1/ (x) , G′ ∈ Fk/ (x,G) , H ′ ∈ Fk′/(x,H), F ′ ∈ Fd−1/(F ),
where we have set for short (x,G) = xFk−1+(G), the subspace spanned
by a representative G of G and multiples of x (and likewise for (x,H)).
It gives the C[ε]−point (ε2 = 0)

S + εS ′ = (x+ εL′)(F + εF ′) + (G+ εG′)2(H + εH ′)
= xF +G2H + ε(xF ′ + FL′ + 2GHG′ +G2H ′)

with S ′ := xF ′ + FL′ + 2GHG′ + G2H ′. Now suppose S ′ is zero in
TSP(Fd) = Fd/(S). Set F = F (0, y, z, w). We may assume x does not
occur in G,H,L′, G′, H ′. We deduce FL′ + 2GHG′ + G2H ′ ∈ 〈G2H〉.
Hence G divides FL′. Since F,G,H are general, we conclude G divides
L′. Now if degG = k ≥ 2, this implies L′ = 0 = F ′ = G′ = H ′ as
desired. If L′ 6= 0 then G = L′ up to scalar and k = 1, k′ = d − 2. It
follows that F+2HG′+GH ′ lies in the ideal 〈G,H〉. This is avoided by
genericity, provided d > 2. If d = 2, k′ = 0, then H = 1, H ′ = 0 and we
have the situation as in the case (3.1). To finish, observe that the di-
mension calculated in (2) can be retrieved as follows: subtract from the
quantity dim(X ×P(Fd))(=

(
k+2

2

)
+
(
d+3

3

)
− 1), the Hilbert polynomial

of a plane curve of degree 2k, to wit, p(d) = 2dk+ 1− (2k− 1)(k− 1).
Likewise, if a surface S of degree d has two distinct k−tropes, it lies in
the image of a variety of dimension

dim(X ×X × P(Fd))− 2(2dk + 1− (2k − 1)(k − 1)).
This is strictly smaller than dimYd,k for all big d. 2

We recall that the total Segre class of a vector bundle E is equal to
the inverse of the total Chern class, cf. [2, p.50,§3.2]:

s(E) = c(E)−1.
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There are polynomial formulas expressing the ith Segre class in terms
of Chern classes and vice-versa. Also, if E ′ ⊂ E is a vector subbundle,
Whitney’s formula holds: s(E) = s(E ′)s(E/E ′).

4.2. Proposition. Notation as above, we have the formula

degYd,k =

∫
sdimX(F̃d) ∩X,

with the top dimensional Segre class calculated from

s(F̃d) = s(OP̌3(−1))
(d+2

3 )
s(OFk

(−2)⊗Fd−2k).

Proof. Let h denote the hyperplane class of P(Fd). By general principles
from intersection theory,

degYd,k =

∫
hNd,k ∩ Yd,k.

Since F̃d is a vector subbundle of X × Fd, the degree of Yd,k can be
calculated upstairs. Indeed, using projection formula and generic in-
jectivity ensured in Lemma 4.1,

degYd,k =

∫
π?hNd,k ∩ P(F̃d).

Pushing forward via P(F̃d,k) → X and recalling (3), we get the asser-
tion (cf. [2, 3.1]). 2

5. examples

Pushing down via X = P(Fk) → P̌3, we get, for each k, a poly-
nomial in d. The first few values seem to point towards a nice closed
formula in terms of k, d, but so far we haven’t managed to sort it out.
Here is a sample:
k = 1 :

(
d
3

)
(d2 − d + 4)(3d4 − 6d3 + 11d2 − 8d + 12)/6;

k = 2 :
(
d−2

2

)
(d2 − 5d + 12)(d2 − 5d + 14)

(
207d10 − 2259d9

+4278d8 + 74486d7 − 699689d6 + 3156341d5 − 8896820d4

+16501736d3 − 19769000d2 + 14106240d− 4838400
)
/(24 · 34 · 5 · 7);

. . .
k = 6 :

(
d−10

2

)
(d2 − 21d + 116)(d2 − 21d + 118) · · · (d2 − 21d + 162)

(891d10 − 54158d9 + 1376712d8 − 18439700d7 + 127907907d6

−231224361d5 − 3266133060d4 + 28228362487d3 − 98166708726d2

+149105049696d− 52825449600)
/

(222314567311213217 · 19 · 23 · 29).

See the appendix for a maple code.



6 I. VAINSENCHER

6. higher dimension

Could move up, say to P4. Now one may either keep cutting with hyper-
planes, or stick to P2’s. In the former case, the hypersurfaces will presently
be singular along a curve, cf. (5).

So we take the decision to stick to sections by P2’s. We are now looking
at hypersurfaces in P4 of the form

S = x0F0 + x1F1 + G2H

where G,H ∈ C[x2, x3, x4],degG = k. Presently S needs no longer be
singular.

Write Gr = Gr(3, 5) for the grassmannian of P2’s in P4, with tautological
sequence

A // // Gr ×F1
// // F1,

where rkA=2, rkF1=5. The fibers of A give equations for P2 ⊂ P4. Take

symmetric powers. Put Ad = ker( Gr ×Fd // // Fd ). Set

X = P(Fk),
a projective bundle over Gr(3, 5). Form the diagram of vector bundles over
X (similar to (3) on p. 2),

Ad
��

��

Ad
��

��
F̃d,k // // X ×Fd

����
OFk

(−2)⊗Fd−2k

����
// // Fd.

We find a projective subbundle P(F̃d,k) ⊂ X × P(Fd). It parameterizes the

data (p, C, f) where


p ' P2 ⊂ P4, plane;
C ⊂ p : plane curve of deg = k
f = threefold with deg = d such that
p ∩ f is non-transverse all along C.

The degree of the image of P(F̃d,k) in P(Fd) can be found as before, using
computer algebra. We list the first few values.
k = 1 : 1

63

(
d
4

)(
18d10 − 162d9 + 801d8 − 2740d7 + 6862d6 − 13348d5+

20137d4 − 24370d3 + 23374d2 − 14028d + 15120
)
;

k = 2 : 10
32·11!

(
d−2

2

)(
11916d20 − 307512d19 + 3384207d18 − 18547587d17 + · · ·

+973950299424000d2 − 435442434716160d + 97440421478400
) ;

k = 4, 5
3219!

(
d−6

2

) 7∏
0

(d2 − 13d + 54 + 2i)
(
10499814d22 − 918982866d21 + · · ·

−200158971027717335961600d + 62713770449105018880000
)
.

7. concluding remarks

Back in 1992, I was happily counting singular curves with up to six nodes
varying in a family of smooth surfaces, partly just to amuse myself, partly
trying to answer a question posed by Sheldon Katz on rational plane sections
on a quintic threefold.
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For instance, if we fix a smooth projective surface Y and let the curves
vary in a 6–dimensional linear system with numerical invariants

d := c1L · c1L, k := c1L · c1KY , s := c1KY · c1KY , x := c2(Y )

we found (cf. [6]) a formula for the number of six-nodal curves,
N6 = (81/80)d6 + (81/40x − 567/8 + 81/20k)d5 + (27/16x2 + (27/4k −
1701/16)x − 81/8s + 8109/4 + 27/4k2 − 4077/16k)d4 + (3/4x3 + (9/2k −
63)x2 + · · ·

Slightly later, according to Barbara Fantechi, Lothar Göttsche reportedly
perceived in this maze of letters and numbers the first terms of an “obvious”
expansion of the product of 4 power series depending solely on the four Chern
numbers x, s, k, d, leading to his ground-breaking conjecture, [3].

It turns out that the case of intersections of a general quintic threefold
with varying P2’s in P4 was of interest for string theory.

At about the same time, the cases of (singular) rational curves lying on
K3-surfaces of low genera helped to confirm a generating series (physically)
found by Yau and Zaslow,∏

k>0

1

(1− qg)24
=
∑
d≥0

Ndq
d

= 1+24q+324q2+3200q3+25650q4+176256q5+1073720q6+5930496q7+· · ·
eventually proven au goût des mathématiciens by A. Beauville.

Recently, Yu-Jong Tzeng used Levine and Pandharipande’s theory of al-
gebraic cobordism to prove Göttsche’s conjecture.

We may hope the formulas given here may also fit into some generating
series. So, long live resolution of and/or counting singularities!

8. appendix: maple codes

with(schubert): #Thanks to Katz & Stromme!

DIM:=3; Q:=4-o(-h); answ:=[ ]:

for k to 3 do

Sk:=Symm(k,Q); Sk1:=Symm(d-2*k,Q);

F0:=o(-h)*Symm(d-1,4);mk:=binomial(k+2,2)-1;

DIM:=3+mk; F0:=F0+o(-2*H)*Sk1;

F0:=collect(mtaylor(chern(DIM,-F0),h,4),H);

for i from degree(F0,H) by -1 to ldegree(F0,H) do

F0:=subs(H^(i)=chern(i-mk,-Sk),F0)

od:

factor(%):F0:=%/h^3;answ:=[op(answ),[k,F0]]:

print(k,degree(collect(F0,d),d),F0)

od:

with(schubert): #now P2’s in P4

grass(2,5,q); Q:=dual(Qq);

sd:=Symm(d,Q);bfd:=collect(Symm(d,5)-sd,t);

for k to 6 do

#k:=1;

Sk:=Symm(k,Q); Sk1:=Symm(d-2*k,Q);

F0:=sd;mk:=binomial(k+2,2)-1;

DIM:=Gq[dimension_]+mk; F0:=F0+o(-2*H)*Sk1;
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F0:=collect(chern(DIM,-F0),H);

F0:=collect(F0-mtaylor(F0,H,mk),H):

for i from degree(F0,H) by -1 to ldegree(F0,H) do

F0:=subs(H^(i)=chern(i-mk,-Sk),F0)

od:

F0:=subs(q1=t*q1,q2=t^2*q2,F0):

F0:=coeff(mtaylor(F0,t,7),t^6):integral(Gq,%);

print(k,factor(%));

od:

Acknowledgments. Many thanks are due to the referees for kindly offering
suggestions and pointing out several corrections.
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Departamento de Matemática, UFMG, Belo Horizonte, MG, Brazil
E-mail address: israel@mat.ufmg.br


	1. introduction
	2. parameter space
	3. surfaces with a trope are singular
	3.1. test d=2,k=1 
	3.2. test d=3,k=1 

	4. calculation of the degrees
	4.1. Lemma
	4.2. Proposition

	5. examples
	6. higher dimension
	7. concluding remarks
	8. appendix: maple codes
	References

