
CHAPTER 8

Markov Chains

This chapter is inspired partly by [Nev70] and [R.88].

8.1. Definitions and Basic Properties

Let S be a finite or countable set, which we call state space, endowed with the
σ-algebra P(S) = {A : A ⊂ S}.
Definition 8.1.1. Let (Ω,F, P ) be a probability space. A sequence of S-valued
random variables (Xn)n≥0 is a Markov chain (with state space S) if for all n ≥ 0,
Xn : Ω → S is measurable and

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn) (8.1.1)

for all x0, . . . , xn+1 ∈ S.

We avoided to mention that (8.1.1) holds P -almost surely, and will usually con-
tinue doing so in the sequel. We don’t yet worry about the structure of the
underlying probability space (Ω,F, P ), although a canonical choice will be made
in Section 8.1.1.

We will mostly consider the case where the probability P (Xn+1 = xn+1|Xn = xn)
does not depend on n, that is where

P (Xn+1 = y|Xn = x) = P (X1 = y|X0 = x)

for all n ≥ 1. In such case, the chain is called homogeneous, and the dependence
among the random variables is determined by the numbers P (X1 = y|X0 = x),
called transition probabilities. Observe that these satisfy

∑
y∈S P (X1 = y|X0 =

x) = 1 (P -a.s.) for all x ∈ S. We are interested in the study of Markov chains
for which the transition probabilities are specified a priori.

Definition 8.1.2. A collection Q(x, y), x, y ∈ S, is called a transition probability
matrix if Q(x, y) ∈ [0, 1] and if

∑
y∈S Q(x, y) = 1 for all x ∈ S. A homogeneous

Markov chain (Xn)n≥0 has transition probability matrix Q if

P (Xn+1 = y|Xn = x) = Q(x, y) P -a.s.

for all n ≥ 0, x, y ∈ S.

Although it might seem trivial at this point, observe that for all y ∈ S, x 7→
Q(x, y) is measurable. The existence of a Markov chain associated to a transition
probability matrix will be shown in Section 8.1.1. Before going further we give a
serie of examples.
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66 8. MARKOV CHAINS

Example 8.1.1. Independent variables furnish a trivial example of Markov chain.
Let (Xn)n≥0 be a sequence of i.i.d random variables with distribution µ over
(S,P(S)). If we define Q(x, y) := µ(y), then by independence,

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = µ(xn+1) ≡ Q(xn, xn+1) .

Example 8.1.2. The two state Markov chain is defined for S = {1, 2}. An example
of a transition matrix is given in the following graphical representation:
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Example 8.1.3. The random walk on S = Zd. We considered the simplest case of
random walk in Section 6. Consider a sequence (Yn)n≥1 of Z

d-valued independent
identically distributed random variables, and denote their common distribution
by p. Define S0 := 0, and for all n ≥ 1, Sn :=

∑n

k=1 Yk. The sequence (Sn)n≥0 is
called a random walk on Zd. Observe that, since Yn+1 is independent of S1, . . . , Sn,
we have

P (Sn+1 = xn+1|Sn = xn, . . . , S0 = x0)

= P (Yn+1 = xn+1 − xn|Sn = xn, . . . , S0 = x0)

= P (Yn+1 = xn+1 − xn)

= P (Yn+1 = xn+1 − xn|Sn = xn)

= P (Sn+1 = xn+1|Sn = xn) .

Therefore, since P (Yn+1 = xn+1 − xn) = p(xn+1 − xn), (Sn)n≥0 is a Markov chain
with state space S = Zd and transition matrix Q(x, y) = p(y − x). When

p(x) =

{
1
2d

if ‖x‖1 = 1 .

0 otherwise,
(8.1.2)

that is when p(±ei) = 1
2d

where the e1, . . . , ed are the canonical unit vectors of

Rd, the random walk is called simple, symmetric. More will be said on random
walks in Section 8.3.2.

Example 8.1.4. Uniform Random Walk on a Graph. Let G = (V,E) be a simple
graph without loops. For each x ∈ V , we assume that Ax := {y ∈ V : {x, y} ∈ E}
is finite: |Ax| <∞. Setting S ≡ V , one can define a transition matrix by

Q(x, y) :=

{
1

|Ax| if {x, y} ∈ E ,

0 otherwise .
(8.1.3)

The simple random walk of the previous example is a particular case.

Example 8.1.5. The Ehrenfest chain. Consider two urns with a total of r balls.
Each urn can be considered as a box with a certain number of molecules, the
total number of molecules being r. At each time step, a ball is chosen at random
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(in either box) and its position switched to the other box. Let Xn be the number
of balls in the first box at time n. Then (Xn)n≥0 is a Markov Chain with state
space S = {0, 1, 2, . . . , r} and transition matrix Q given by

Q(k, k + 1) =
r − k

r
, Q(k, k − 1) =

k

r
,

and zero otherwise.

Example 8.1.6. Birth and death chains. Consider S = {0, 1, 2, . . . }, in which
Xn = x means that population at time n is x, and Q(x, y) > 0 only if |x−y| ≤ 1.
Therefore, the chain is determined by the transition probabilities rx = Q(x, x),
qx = Q(x, x− 1) (clearly, q0 = 0), px = Q(x, x+ 1). See Figure 1.

...

...

r1r0 rx
pxp0

qx
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q1
0 1 2

Figure 1. The birth and death chain.

Example 8.1.7. Renewal chains. Consider S = {0, 1, 2, . . . } and a sequence
(pk)k≥1 with

∑
k pk = 1. Then Q(0, k) = pk, and Q(k, k − 1) = 1 for all k ≥ 2.

Example 8.1.8. The Branching Process was introduced by Galton and Watson to

understand extinction or survival of family names. Let (Y
(n)
k )n≥0,k≥1 be an array

of i.i.d. N-valued random variables, with distribution ρ: P (Y
(n)
k = j) = ρ(j)

for all j ≥ 1. Y
(n)
k is the number of children of the kth individual of the nth

generation. Let X0 := 1, and define the total number of individuals of the n+ 1th
generation:

Xn+1 :=
Xn∑

k=1

Y
(n)
k . (8.1.4)

Let us show that (Xn)n≥0 is a Markov chain with state space S = {0, 1, 2, . . . }.

P (Xn+1 = y|Xn = xn, . . . , X0 = x0) = P
( Xn∑

k=1

Y
(n)
k = y

∣∣Xn = xn, . . . , X0 = x0
)

= P
( xn∑

k=1

Y
(n)
k = y

)
.

Since the variables Y
(n)
k are independent, the distribution of the sum

∑xn

k=1 Y
(n)
k

is given by the convolution ρ∗ρ∗· · ·∗ρ (xn times), which we denote by ρ∗xn . This
shows that (Xn)n≥0 is a Markov chain with transition probability matrix given
by

Q(x, y) = ρ∗x(y) ∀x, y ∈ S (8.1.5)
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It is well known that in the subcritical case, i.e. when λ := E[Y
(0)
1 ] ≤ 1, the

population dies out P -almost surely. In the supercritical case, i.e. for λ > 1, then
the population explodes with positive probability.

We define the iterates of a transition matrix as follows: Q(1) := Q, and for n ≥ 2,

Q(n)(x, z) :=
∑

y∈S
Q(n−1)(x, y)Q(y, z) . (8.1.6)

Clearly, each Q(n) is well defined and is again a transition matrix. Let us give an
important equivalent characterization of Markov chains.

Lemma 8.1.1. Let Q be a transition probability matrix. A sequence (Xn)n≥0 is
a Markov chain with transition matrix Q if and only if for all n ≥ 1 and all
x0, . . . , xn ∈ S,

P (X0 = x0, . . . , Xn = xn) = P (X0 = x0)Q(x0, x1) . . . Q(xn−1, xn) . (8.1.7)

In particular, if P (X0 = x0) > 0, then

P (Xn = y|X0 = x0) = Q(n)(x0, y) . (8.1.8)

Proof. Assume (Xn)n≥0 is a Markov chain with transition matrix Q. If
n = 1, (8.1.7) is trivial. Indeed, if P (X0 = x0) = 0 then P (X0 = x0, X1 = x1) = 0
and so P (X0 = x0, X1 = x1) = P (X0 = x0)Q(x0, x1). If P (X0 = x0) = 0 > 0 the
same holds. So assume that (8.1.7) holds for n. Again, if P (X0 = x0, . . . , Xn =
xn) = 0 then P (X0 = x0, . . . , Xn+1 = xn+1) = 0 and the result follows. If
P (X0 = x0, . . . , Xn = xn) > 0 then

P (X0 = x0, . . . , Xn+1 = xn+1)

= P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0)P (X0 = x0, . . . , Xn = xn)

= P (Xn+1 = xn+1|Xn = xn)P (X0 = x0)Q(x0, x1) . . . Q(xn−1, xn)

= P (X0 = x0)Q(x0, x1) . . . Q(xn−1, xn)Q(xn, xn+1) ,

which shows the validity of (8.1.7) for n+ 1. For (8.1.8), use (8.1.7) as follows:

P (Xn = xn, X0 = x0) =
∑

x1,....xn−1

P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)

= P (X0 = x0)
∑

x1,....xn−1

Q(x0, x1) . . . Q(xn−1, xn)

≡ P (X0 = x0)Q
(n)(x0, xn) , (8.1.9)

which gives (8.1.8) if P (X0 = x0) > 0. �

Observe that by (8.1.7), the transition matrix Q completely specifies the evolu-
tion of the chain, once the distribution of X0 is known. Let therefore µ be a
distribution on (S,P(S)). When the distribution of X0 is given by µ, we will
denote the law of (Xn)n≥0 by Pµ. That is, by (8.1.7),

Pµ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . . Q(xn−1, xn) . (8.1.10)
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When µ is a Dirac mass, i.e. µ(x) = 1 for some x ∈ S, we will write Px rather
than Pµ, and interpret x as being a deterministic initial condition. For example,
(8.1.8) gives

Px(Xn = y) = Q(n)(x, y) . (8.1.11)

As can be easily verified, the measure Pµ can be reconstructed by convex combi-
nation of the measures {Px}x∈S:

Pµ =
∑

x∈S
µ(x)Px .

We denote expectations with respect to Px by Ex. We have

Ex(f(Xn)) =
∑

y∈S
f(y)Px(Xn = y)

=
∑

y∈S
f(y)Q(n)(x, y)

≡ Q(n)f(x) , (8.1.12)

where for each n ≥ 1, the function Q(n)f : S → R is defined by

Q(n)f(x) :=
∑

y∈S
Q(n)(x, y)f(y) . (8.1.13)

(8.1.8) says that the distribution of Xn, conditionned on X0, is given by the
nth iterate of Q. This distribution can be written as P (Xn = y|X0 = x0) =
E[1{Xn=y}|X0 = x0]. Since we will also be interested in functions depending on
the process, of the form f : S → R, we might therefore be interested in studying
more general conditional expectations of the form E[f(Xn)|X0 = x0].

Lemma 8.1.2. Let (Xn)n≥1 be a Markov chain with transition matrix Q. If f :
S → R, then for all n ≥ 0,

E[f(Xn+1)|Xn = xn, . . . , X0 = x0] = Qf(xn) . (8.1.14)

More generally, for any set {i1, . . . , ik} ⊂ {1, 2, . . . , n− 1},
E[f(Xn+1)|Xn = xn, Xik = xik . . . , Xi1 = xi1 ] = Qf(xn) . (8.1.15)

8.1.1. The Canonical Chain. Up to now the underlying probability space
on which the chain is defined hasn’t had an important role, but one should of
course verify that at least one such space exists.

Theorem 8.1.1. Let µ be a probability distribution on (S,P(S)) and Q a tran-
sition probability matrix. Then there exists a probability space (Ω′,F′, P ′

µ) and
a sequence of S-valued random variables (Xn)n≥0 on (Ω′,F′, P ′

µ) which form a
Markov Chain with transition probability matrix Q:

P ′
µ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . . Q(xn−1, xn) . (8.1.16)



70 8. MARKOV CHAINS

Proof. By Theorem 7.1.1, one can construct simultaneously a family of i.i.d.
random variables (Yn)n≥1 on the product space Ω′ = [0, 1]N, with uniform distri-
bution on [0, 1] with respect to the Lebesgue measure. Ω′ is endowed with the
product σ-algebra F′ and P ′ is the product of Lebesgue measures. Let us enu-
merate S in an arbitrary way: S = {y1, y2, . . . }. Fix some initial condition x ∈ S.
We define a process (Xx

n)n≥0 on (Ω′,F′, P ′) as follows. First, Xx
0 := x. Then, we

need to define Xx
1 in such a way that P ′(Xx

1 = yk|Xx
0 = x) = Q(x, yk) for all

k ≥ 1. Define, for all z ∈ S,

αk(z) :=
∑

1≤i≤k

Q(z, yi) .

Observe that 0 ≤ α1(z) ≤ α2(z) ≤ · · · ≤ 1, and αk(z) → 1 when k → ∞. Then,
set

Xx
1 = yk if and only if αk−1(x) < Y1 ≤ αk(x) .

Clearly, P ′(Xx
1 = yk|Xx

0 = x) = P ′(αk−1(x) < Y1 ≤ αk(x)) ≡ Q(x, yk). For
n ≥ 2, Xx

n is defined by

Xx
n = yk if and only if αk−1(X

x
n−1) < Yn ≤ αk(X

x
n−1) .

One then gets, by the independence and uniformity of the Yns,

P ′(Xx
n+1 = yk|Xx

n = xn, . . . , X
x
0 = x0) =

= P ′(αk−1(X
x
n) < Yn ≤ αk(X

x
n)|Xx

n = xn, . . . , X
x
0 = x0)

= P ′(αk−1(xn) < Yn ≤ αk(xn))

= Q(xn, yk) , (8.1.17)

which shows that (Xx
n)n≥0 is a Markov chain with transition probability matrix

Q and initial condition x. One can obtain a chain with initial distribution µ by
taking convex combinations. Write the process constructed above (Xn)n≥0, and
denote its law by P ′

x, in order to have P ′
x(X0 = x) = 1. Now define

P ′
µ :=

∑

x∈S
µ(x)P ′

x .

Then, using Lemma 8.1.1,

P ′
µ(X0 = x0, . . . , Xn = xn) =

∑

x∈S
µ(x)P ′

x(X0 = x0, . . . , Xn = xn)

=
∑

x∈S
µ(x)1{x=x0}Q(x0, x1) . . . Q(xn−1, xn)

= µ(x0)Q(x0, x1) . . . Q(xn−1, xn) ,

which is (8.1.16). �

As will become clearer in the sequel, the study of homogeneous Markov chains
is greatly facilitated by the introduction of a certain time translation operator
on the process and of its random version, which will lead to the proofs of all
recurrence results of Section 8.3. In the present section we construct a canonical
space on which this operator will be naturally defined.
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Each realization ω ∈ Ω yields a sequence X1(ω), X2(ω), . . . , which we call a
trajectory of the chain. A natural candidate for the simplest probability space
describing an S-valued Markov Chain (Xn)n≥0 is therefore the space in which each
element ω is itself a trajectory, that is, the elements of which are the sequences
ω = (ω0, ω1, . . . ) where each ωk ∈ S:

Ω := S{0,1,2,... } . (8.1.18)

For each k ≥ 0, consider the coordinate map Xk : Ω → R defined by Xk(ω) := ωk.
The σ-algebra F is defined as the smallest collection of subsets of Ω for which
each Xk is measurable, that is F := σ(Xk, k ≥ 0). The σ-algebra F can also be
obtained by considering the σ-algebra generated by thin cylinders, i.e. subsets of
Ω of the form

[x0, x1, . . . , xn] = {ω ∈ Ω : ω0 = x0, ω1 = x1, . . . , ωn = xn} , (8.1.19)

where x0, . . . , xn ∈ S. The intersection of two thin cylinders is either empty or is
again a thin cylinder. The algebra of cylinders is obtained by taking finite unions
of thin cylinders, and is denoted C. Then clearly, F = σ(C).

Theorem 8.1.2. Let µ be a probability distribution on (S,P(S)) and Q be a
transition probability matrix. Then there exists a unique probability measure Pµ

on (Ω,F) such that on (Ω,F, Pµ), the coordinate maps (Xn)n≥1 form a Markov
Chain with state space S, transition probability matrix Q, and initial distribution
µ:

Pµ(X0 = x0, . . . , Xn = xn) = µ(x0)Q(x0, x1) . . . Q(xn−1, xn) . (8.1.20)

Proof. Consider the probability space (Ω′,F′, P ′
µ) constructed in Theorem

8.1.1, together with the process constructed therein, which we temporarily denote
by (X ′

n)n≥0 in order to distinguish it from the coordinate maps on Ω. Consider
the map ϕ : Ω′ → Ω defined by ϕ(ω′)n := X ′

n(ω
′) for all n ≥ 0.

Lemma 8.1.3. ϕ is measurable: ϕ−1(A) ∈ F′ for all A ∈ F.

Proof. Let A := {A ∈ F : ϕ−1(A) ∈ F′}. Then A is a σ-algebra. Moreover,
it contains all sets of the form X−1

n ({x}), x ∈ S, n ≥ 0, since ϕ−1(X−1
n ({x})) =

(Xn ◦ϕ)−1({x}) = X ′−1
n ({x}) ∈ F′ by definition (the X ′

ns are random variables).
Therefore, A ≡ F. �

Since ϕ is measurable, we can define the image measure Pµ := P ′
µ ◦ϕ−1. We have

Pµ(X0 = x0, . . . , Xn = xn) = P ′
µ(X

′
0 = x0, . . . , X

′
n = xn)

= µ(x0)Q(x0, x1) . . . Q(xn−1, xn) ,

which shows that (Xn)n≥0 has the wanted properties. Regarding uniqueness,

assume P̃µ is another measure also satisfying (8.1.20). But (8.1.20) implies that Pµ

and P̃µ coincide on thin cylinders, and since these generate F, they are equal. �

Alternate proof of Theorem 8.1.2: Let [x0, x1, . . . , xn] be any thin cylin-
der and define

P ([x0, x1, . . . , xn]) := µ(x0)Q(x0, x1) . . . Q(xn−1, xn) . (8.1.21)
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We need to show that P extends uniquely to a probability on (Ω,F) and that
under P . But this follows immediately from Kolmogorov’s Extension Theorem
7.1.2. By (8.1.21), the coordinate maps (Xn)n≥0 clearly define a Markov chain
with transition probability matrix Q and initial distribution µ. �

The following proposition shows that the canonical representation is sufficient
for the study of Markov chains, in the sense that one cannot distinguish the
distribution of the canonical chain from any other.

Proposition 8.1.1. Let (Yn)n≥0 be a Markov chain with initial distribution µ

and transition matrix Q, constructed on some probability space (Ω̃, F̃, P̃ ). Let
(Xn)n≥0 be the Canonical Markov chain with initial distribution µ and transition
matrix Q, constructed on the product space (Ω,F, P ) as above. Then P is the

image of P̃ under the measurable map ϕ : Ω̃ → Ω defined by ϕ(ω̃) := (Yn(ω̃))n≥0.

That is, P = P̃ ◦ ϕ−1.

Proof. We already saw in Lemma 8.1.3 that ϕ is measurable. Now for any
thin cylinder [x0, . . . , xn],

P̃ ◦ ϕ−1([x0, . . . , xn]) = P̃ (Y0 = x0, . . . , Yn = xn)

= µ(x0)Q(x0, x1) · · ·Q(xn−1, xn)

≡ P (X0 = x0, . . . , Xn = xn) . (8.1.22)

Since thin cylinders generate F, this proves the proposition. �

8.2. The Markov Property

The basic relation defining a Markov chain, (8.1.1), says that conditionnally on
a given past up to time n, X0, X1, . . . , Xn, the distribution of Xn+1 depends only
on Xn. Since this and time homogeneity suggest a certain translation in time,
the canonical space constructed in the previous section appears well adapted to
the precise formulation of a more general version of this property: conditionnally
on a given past up to time n, X0, X1, . . . , Xn, the distribution of the entire future
Xn+1, Xn+2, . . . depends only on Xn. So from now on, the Markov chain under
consideration will always be considered as built on the canonical product space
Ω defined in (8.1.18). Define the transformation θ : Ω → Ω, called the shift, by

θ(ω)n := ωn+1 ∀n ≥ 0 .

Since θ−1(X−1
n ({x})) = X−1

n+1({x}) ∈ F, θ is measurable. One can of course iter-
ate the shift: θ1 := θ, and θn+1 := θn ◦ θ.

To use the language of conditional expectation, we encode the information con-
tained in the past of n, X0, X1, . . . , Xn, in the σ-algebra Fn := σ(X0, X1, . . . , Xn).

Theorem 8.2.1 (Simple Markov Property). Let x ∈ S, and n ≥ 1. Let ϕ :
Ω → R be bounded, positive and Fn-measurable. Then for all bounded, positive,
measurable ψ : Ω → R,

Ex[ϕ · ψ ◦ θn] = Ex[ϕ · EXn
(ψ)] . (8.2.1)
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In the right-hand side of (8.2.1) appears the random variable EXn
(ψ), which is

just Ex(ψ) evaluated at Xn
1. Observe that by taking ϕ = 1A for each A ∈ Fn,

(8.2.1) is equivalent to the Px-almost sure statement

Ex[ψ ◦ θn|Fn] = EXn
[ψ] . (8.2.2)

Proof. We first consider the case where ϕ and ψ are indicators of thin cylin-
ders: ϕ = 1C , with C = [x0, . . . , xn], ψ = 1D with D = [y0, . . . , yp]. We have

EXn
[ψ] =

∑

x′

0,...,x
′

p

ψ(x′0, . . . , x
′
p)PXn

(X0 = x′0, . . . , Xp = x′p)

= 1{Xn=y0}Q(y0, y1) . . . Q(yp−1, yp) ,

which leads to

Ex[ϕ ·EXn
(ψ)] = 1{x0=x}Q(x0, x1) . . . Q(xn−1, xn)1{xn=y0}Q(y0, y1) . . . Q(yp−1, yp) .

On the other hand,

Ex[ϕ · ψ ◦ θn] = Ex[1{X0=x0} . . . 1{Xn=xn}1{Xn=y0}1{Xn+1=y1} . . . 1{Xn+p=yp}]

= Px(X0 = 0, . . . Xn = xn, Xn = y0, Xn+1 = y1, . . . , Xn+p = yp)

= 1{x0=x}Q(x0, x1) . . . Q(xn−1, xn)1{xn=y0}Q(y0, y1) . . . Q(yp−1, yp) ,

which shows (8.2.1) in the particular case. We then show that for the same ϕ,
(8.2.1) holds also in the case where ψ = 1A, where A ∈ F. Consider the class
A = {A ∈ F : Ex[ϕ·1A◦θn] = Ex[ϕ·EXn

(1A)]}. We know that A contains all thin
cylinders, and therefore all cylinders by summation. It is then easy to verify that
A is a Dynkin system, and so A = F by Theorem 3.0.1. Now, the extension to
arbitrary bounded positive functions follows by uniform approximation by simple
functions. �

A simple application of the Markov Property is the following identity, known as
the Chapman-Kolmogorov Equation:

Px(Xm+n = y) =
∑

z∈S
Px(Xm = z)Pz(Xn = y) . (8.2.3)

Namely, one can write Px(Xm+n = y) = Ex[Ex(1Xm+n=y|Fm)], and then

Ex[Ex(1Xm+n=y|Fm)] = Ex[Ex(1Xn=y ◦ θm|Fm)]

= Ex[EXm
(1Xn

= y)]

= Ex[PXm
(Xn = y)]

=
∑

z∈S
Px(Xm = z)Pz(Xn = y) . (8.2.4)

The reader should convince himself that any other proof of (8.2.3) will necessary
end up requiring one or another form of the Simple Markov Property.

1Observe here that x 7→ Ex(ψ) is P(S)-measurable, and that ω 7→ EXn(ω)(ψ) is a random
variable.
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The Markov Property deserves an extension to the case there the time n is re-
placed by a random time T . The reason is the following. Suppose we are in-
terested in the following question: if the chain returns back to its starting point
with probability one, is it true that it will do so an infinite number of times?
This seems clear since at the time of first return, the chain is back at its original
position and therefore by the Markov Property the probability of coming back a
second time is again one, and so on. Nevertheless, the times at which the chain
returns to its starting point are random, and the simple Markov Property can’t
be used in its actual form.

Random times are usually called stopping times. We will define them here in
the framework of Markov chains; in Section 9 these will be used extensively in
the chapter on martingales. A stopping time satisfies a list of properties which
we first illustrate on a simple example. Let (Xn)n≥0 be the random walk on the
integers with initial condition X0 = 0. Considering n as a parameter describing
time, an example of a random time is the first return of the walk to the origin,
which we already encountered in Section 6:

T0 := inf{n ≥ 1 : Xn = 0} . (8.2.5)

If the walk never returns to the origin, i.e. {n ≥ 1 : Xn = 0} = ∅, we set T0 = ∞.
So T0 is a random variable taking values in {1, 2, . . . }∪{∞}. Moreover, the event
{T0 = n} is insensitive to the change of any of the variables Xk for k > n. This is
made clear by noting that {T0 = n} = {X1 6= 0, . . . , Xn−1 6= 0, Xn = 0}. In other
words, {τ0 = n} is Fn-measurable, where Fn = σ(X0, X1, . . . , Xn). We call the
sequence (Fn)n≥0 the natural filtration associated to the chain (Xn)n≥0. Clearly,
Fn ⊂ Fn+1 for all n ≥ 0. The natural filtration can be defined for any random
process.

Definition 8.2.1. Consider the natural filtration (Fn)n≥0 associated to a Markov
chain (Xn)n≥0. A stopping time is a {1, 2, . . . } ∪ {∞}-valued random variable T
such that for all n ≥ 0, {T = n} ∈ Fn.

In the Simple Markov Property, we considered a Markov chain at a fixed time
n, conditionned with respect to Fn. We now want to consider the same chain
at a random time T , and condition with respect to the σ-algebra which contains
events that depend only on what happened before T . Since it doesn’t make sense
to write “σ(X0, X1, . . . , XT )”, we say that A ∈ FT if each time T ≤ n then
A ∈ Fn. So define the stopped σ-algebra generated by T :

FT := {A ∈ F : A ∩ {T ≤ n} ∈ Fn ∀n ≥ 0} . (8.2.6)

Fot example, {T <∞} ∈ FT . It can be easily verified that FT is a σ-algebra (see
Exercise 8.12). The position of a Markov chain at time T is naturally defined by
the random variable

XT (ω) :=

{
Xn(ω) if T (ω) = n ,

“0” if T (ω) = ∞ ,
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where “0” is any fixed point of S. We also define θ∞ := id. We are now ready
to move on to the study of the Markov Property when the conditionning is done
with respect to the past of a random stopping time.

Theorem 8.2.2 (Strong Markov Property). Let x ∈ S. Let T be a stopping time
adapted to the natural filtration (Fn)n≥0. Let ϕ : Ω → R be bounded, positive and
FT -measurable. Then for all bounded, positive, measurable ψ : Ω → R,

Ex[1{T<∞} · ϕ · ψ ◦ θT ] = Ex[1{T<∞} · ϕ · EXT
(ψ)] . (8.2.7)

In particular, if Px(T <∞) = 1, then

Ex[ϕ · ψ ◦ θT ] = Ex[ϕ · EXT
(ψ)] . (8.2.8)

The analogue of (8.2.2) for random times reads

Ex[1{T<∞} · ψ ◦ θT |FT ] = 1{T<∞}EXT
[ψ] Px-a.s. (8.2.9)

Proof. The proof follows by writing {T <∞} =
⋃

n≥0{T = n}. Then, since
1{T=n} · ϕ is Fn-measurable, by the Simple Markov Property,

Ex[1{T=n} · ϕ · ψ ◦ θT ] = Ex[1{T=n} · ϕ · ψ ◦ θn]
= Ex[1{T=n} · ϕ · EXn

(ψ)]

= Ex[1{T=n} · ϕ · EXT
(ψ)] .

Summing over n gives (8.2.7). �

8.3. Recurrence and Classification

We now consider the recurrence problem mentionned before in the case of the
random walk: when does a Markov chain come back to its starting point? As
before, we will always consider the canonical chain constructed on the product
space Ω = S{0,1,2,... }.

Two random variables are relevant in the study of recurrence. For each x ∈ S,
the first visit at x is defined by

Tx := inf{n ≥ 1 : Xn = x} , (8.3.1)

where we set Tx := ∞ if {n ≥ 1 : Xn = x} = ∅. Observe that Tx is a stopping
time since {Tx > n} = {X1 6= x, . . . , Xn 6= x} ∈ Fn. On the other hand, the
number of visits at site x is defined by

Nx :=
∑

n≥1

1{Xn=x} . (8.3.2)

Clearly, Nx ≥ 1 if and only if Tx < ∞, and so Px(Nx ≥ 1) = Px(Tx < ∞). A
cornerstone in the study of recurrence for Markov chains is a generalization to
the situation where Nx ≥ k.

Lemma 8.3.1. Let x, y ∈ S, k ≥ 1. Then

Px(Ny ≥ k) = Px(Ty <∞)Py(Ny ≥ k − 1) . (8.3.3)

In particular, Px(Nx ≥ k) = Px(Tx <∞)k−1.
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Proof. Observe that Ny = Ny ◦ θTy
+ 1. Therefore, Ny ≥ k + 1 if and only

if Ty <∞ and Ny ◦ θTy
≥ k:

Px(Ny ≥ k + 1) = Px(Ty <∞, Ny ◦ θTy
≥ k)

= Ex[1{Ty<∞} · 1{Ny≥k} ◦ θTy
] .

By the Strong Markov Property (with ϕ = 1) and since XTy
= y,

Ex[1{Ty<∞} · 1{Ny≥k} ◦ θTy
] = Ex[1{Ty<∞} · EXTy

[1{Ny≥k}]]

= Ex[1{Ty<∞}]Ey[1{Ny≥k}]

≡ Px(Ty <∞)Py(Ny ≥ k) . (8.3.4)

The second affirmation follows from the first by induction. �

As an immediate corollary, we obtain the following formula:

Ex[Nx] =
∑

k≥1

Ex[Nx ≥ k] =
1

1− Px(Tx <∞)
=

1

Px(Tx = ∞)
. (8.3.5)

This formula makes sense also when Px(Tx = ∞) = 0, in which case Ex[Nx] = ∞.

Definition 8.3.1. A point x ∈ S is called

• recurrent if Px(Tx <∞) = 1,
• transient if Px(Tx <∞) < 1.

Proposition 8.3.1. Let x ∈ S. Then

(1) x is recurrent if and only if Px(Nx = ∞) = 1 ,
(2) x is transient if and only if Px(Nx = ∞) = 0.

Proof. Assume x is recurrent. Then since {Nx ≥ k} ց {Nx = +∞},
and since Px(Nx ≥ k) = 1 by the previous lemma, we have Px(Nx = ∞) = 1.
Conversely, if Px(Nx = ∞) = 1 then Px(Nx ≥ k) = 1 for all k ≥ 1, which implies
Px(Tx < ∞) = 1 by the previous lemma: x is recurrent. If x is transient then
Px(Tx < ∞) < 1, and by Lemma 8.3.1, Px(Nx = ∞) = limk→∞ Px(Nx ≥ k) =
0 . �

Observe that {Nx = ∞} is a tail event, and we have proved that with respect
to Px, its probability is either 0 (when x is transient) or 1 (when x is recurrent).
Nevertheless, we have not yet proved a 0-1 Law for Markov chains.

The goal of the rest of this section is to study the partition of S into recurrent
and transient states. Comparison of recurrence properties of different points x, y,
will be done by studying the expected number of visits at y when started from x:

u(x, y) := Ex[Ny] . (8.3.6)

Lemma 8.3.2. For any x, y ∈ S,

(1) u(x, y) =
∑

n≥0Q
(n)(x, y).

(2) x is recurrent if and only if u(x, x) = ∞.
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(3) If x 6= y, then

u(x, y) = Px(Ty <∞)u(y, y) . (8.3.7)

Each of these properties is intuitive: together, (1) and (2) give a computable
criterium for verifying whether a point is recurrent, which will be used repeatedly
in the sequel (in particular for random walks, in Section 8.3.2). The identity
(8.3.7) gives a simple way of comparing recurrence properties of different points.

Proof of Lemma 8.3.2. (1) follows by the definition of Ny and (8.1.8), (2)
was shown in (8.3.5). For (3), we use the Strong Markov Property. Since Ny = 0
on {Ty = ∞},

Ex[Ny] = Ex[Ny, Ty <∞] = Ex[1{Ty<∞} ·Ny ◦ θTy
]

= Ex[1{Ty<∞} · Ey[Ny]]

= Px(Ty <∞)Ey[Ny] ,

which is (8.3.7). �

“Recurrence is contagious”, as seen hereafter.

Lemma 8.3.3. Let x be recurrent, and y 6= x. If u(x, y) > 0, then Py(Tx <

∞) = 1, u(y, x) > 0, y is recurrent and Px(Ty < ∞) = 1. If y is transient, then
u(x, y) = 0.

Proof. Since x is recurrent, Px(Nx = ∞) = 1 (Proposition 8.3.1), and so

0 = Px(Nx <∞) ≥ Px(Ty <∞, Tx ◦ θTy
= ∞)

= Ex[1{Ty<∞} · 1{Tx=∞} ◦ θTy
]

= Ex[1{Ty<∞} · Ey[1{Tx=∞}]]

= Px(Ty <∞)Py(Tx = ∞) . (8.3.8)

Since u(x, y) > 0, there exists n ≥ 1 such that Q(n)(x, y) > 0, which implies
Px(Ty < ∞) ≥ Q(n)(x, y) > 0. (8.3.8) thus gives Py(Tx = ∞) = 0, i.e. Py(Tx <
∞) = 1. By (8.3.7), we obtain u(y, x) = Py(Tx < ∞)u(x, x) = ∞ > 0. Since
u(y, x) > 0, there exists m ≥ 1 such that Q(m)(y, x) > 0. Then, for all p ≥ 0, by
the Chapman-Kolmogorov Equation,

Q(n+m+p)(y, y) ≥ Q(m)(y, x)Q(p)(x, x)Q(n)(x, y) ,

and so

u(y, y) ≥
∑

p≥0

Q(n+m+p)(y, y) ≥ Q(m)(y, x)
[∑

p≥0

Q(p)(x, x)
]
Q(n)(x, y) = ∞ ,

which implies that y is recurrent. Proceeding as above from y to x gives Px(Ty <
∞) = 1. The last claim is then obvious. �

As an application, consider the simple random walk on Z with 0 < p < 1.
Let x, y ∈ S, x < y. Then u(x, y) ≥ Q(y−x)(x, y) ≥ py−x > 0. Similarly,
u(y, x) ≥ qy−x > 0. Therefore, all points are either recurrent, or transient. It is
thus sufficient to consider the recurrence properties of the origin. By Theorem
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6.1.1, we have that all points are recurrent if p = 1
2
, transient otherwise.

Going back to the general case, let us write S as a disjoint union R ∪ T, where
R are the recurrent points and T are the transient points. Define the following
relation on R: x ∼ y if and only if u(x, y) > 0. Then obviously x ∼ x, and
Lemma 8.3.3 shows that ∼ is reflexive: x ∼ y implies y ∼ x. On the other hand,
Then, if x ∼ y then there exists n ≥ 1 with Q(n)(x, y) > 0, if y ∼ z then there
exists m ≥ 1 with Q(n)(y, z) > 0, and so Q(n+m)(x, z) > 0, i.e. x ∼ z. That is,
∼ is an equivalence relation, and we can consider the partition of R into equiv-
alence classes. Since R is countable, this partition also is, and we denote it by
R =

⋃
j≥1 Rj. Each Rj is called a recurrence class.

The Classification Theorem hereafter proves the following intuitive properties: the
chain started at x ∈ Rj stays in Rj forever and visits any other y ∈ Rj an infinite
number of times. The chain started at x ∈ T either never visits R and visits any
transient point a finite number of times, or eventually enters a recurrence class
Rj and stays there forever.

Theorem 8.3.1. The decomposition S = T∪⋃j≥1 Rj has the following properties:

(1) If x ∈ Rj then, Px-almost surely, Ny = ∞ for all y ∈ Rj and Ny = 0 for
all y ∈ S\Rj.

(2) If x ∈ T and TR := inf{n ≥ 1 : Xn ∈ R} then, Px-almost surely,
(a) either TR = ∞ and then Ny <∞ for all y ∈ S,
(b) or TR < ∞ and there exists a random j ≥ 1 such that Xn ∈ Rj for

all n ≥ TR.

Proof. (1) Let x ∈ Rj. Then Ex(Ny) = u(x, y) = 0 for all y ∈ T by Lemma
8.3.3, and for all y ∈ Ri (i 6= j) by definition. Therefore, Ny = 0 Px-a.s. for all
y ∈ S\Rj. If y ∈ Rj, then by taking k → ∞ in Lemma 8.3.1, we get

Px(Ny = ∞) = Px(Ty <∞)Py(Ny = ∞) . (8.3.9)

But Px(Ty < ∞) = 1 by Lemma 8.3.3, and Py(Ny = ∞) = 1 by Proposition
8.3.1. Therefore, Ny = ∞ Px-a.s.
(2) Let x ∈ T. We first show (2a), which means

Px(TR = ∞) = Px(TR = ∞, Ny <∞∀y ∈ T) . (8.3.10)

Since

Px(TR = ∞, Ny <∞∀y ∈ T) = Px(TR = ∞)− Px

(
{TR = ∞} ∩

⋃

y∈T
{Ny = ∞}

)
,

it suffices to notice that for each y ∈ T,

Px(TR = ∞, Ny = ∞) ≤ Px(Ny = ∞) ,

which is zero since y is transient (use (8.3.9) and Proposition 8.3.1). This proves
(8.3.10). Then we show (2b), which means

Px(TR <∞) = Px(TR <∞, ∃j ≥ 1 s.t. Xn ∈ Rj∀n ≥ TR) . (8.3.11)
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Since the recurrence classes Rj are disjoint, we can compute

Px(TR <∞, Xn ∈ Rj∀n ≥ TR) = Ex[1{TR<∞} · 1{Xn∈Rj∀n≥0} ◦ θTR
]

= Ex[1{TR<∞} · PXTR
(Xn ∈ Rj∀n ≥ 0)]

But clearly, PXTR
(Xn ∈ Rj∀n ≥ 0) = 1 if XTR

∈ Rj, 0 if XTR
6∈ Rj. Therefore,

the right hand side of (8.3.11) equals
∑

j≥1

Ex[1{TR<∞} · PXTR
(Xn ∈ Rj∀n ≥ 0)] = Ex

[
1{TR<∞}

∑

j≥1

1{XTR
∈Rj}

]

≡ Ex[1{TR<∞}]

= Px(TR <∞) .

We have used the fact that
∑

j≥1 1{XTR
∈Rj} = 1{XTR

∈R} = 1 on {TR < ∞}. This
finishes the proof of the theorem. �

8.3.1. Irreducibility. The Classification Theorem shows that the long time
evolution of a Markov chain depends on how the state space S splits into equiv-
alence classes, via the use of the function u. It is natural to consider the case in
which the chain has a single class.

Definition 8.3.2. A chain is called irreducible if u(x, y) > 0 for all x, y ∈ S.

An equivalent definition of irreducibility is: for all x, y ∈ S, there exists an n ≥ 1
such that Q(n)(x, y) > 0. As seen hereafter, in an irreducible chain, all the points
are of the same type.

Theorem 8.3.2. Let the chain be irreducible. Then

(1) either all the points are recurrent, there exists a single recurrence class
S ≡ R1, and Px(Ny = ∞∀y ∈ S) = 1 for all x ∈ S,

(2) or all states are transient, S = T, and Px(Ny < ∞∀y ∈ S) = 1 for all
x ∈ S.

When S is finite, only the first case can happen.

Proof. (1) If there is a recurrent point, then by the irreducibility hypothesis
and Lemma 8.3.3, all points are recurrent, and clearly there can exist only one
recurrence class. The statement, as well as (2), follow from Theorem 8.3.1. For
the last statement, assume |S| < ∞. If some x ∈ S were transient, then by (2),
we would have, Px-a.s., Ny <∞ for all y ∈ S. In particular,

∑
y∈S Ny <∞. But

this is absurd since
∑

y∈S
Ny =

∑

y∈S

∑

n≥0

1{Xn=y} =
∑

n≥0

∑

y∈S
1{Xn=y} = ∞ .

(Indeed, for each n ≥ 0,
∑

y∈S 1{Xn=y} = 1.) �

Before going further and introduce invariant measures, we apply these results to
the study of recurrence of random walks on Zd.
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8.3.2. The Simple Symmetric Random Walk on Zd. The simple ran-
dom walk on Zd was introduced in Example 8.1.3: Sn =

∑n

k=1Xk, where S0 = 0
and the variables Xk are Zd-valued, i.i.d., with distribution p defined in (8.1.2).
We denote the probability describing the walk by P (rather than P0). Clearly,
the chain is irreducible. By Theorem 8.3.2, the points are either all recurrent, or
all transient. It is thus enough to consider the origin, whose time of first return
is denoted T0. The random walk is recurrent if P (T0 < ∞) = 1, and transient
otherwise (i.e. if P (T0 < ∞) < 1). The main result for the simple random walk
is the following.

Theorem 8.3.3. The simple symmetric random walk is recurrent for d = 1, 2,
and transient for d ≥ 3.

Since Q(n)(0, 0) = P (Sn = 0), which is zero when n is odd, Lemma 8.3.2 gives
the following criterium for recurrence.

The walk is recurrent ⇔
∑

n≥1

P (S2n = 0) = ∞ . (8.3.12)

Recurrence for d = 1, 2 will be obtained with the following property of symmetric
random walks.

Lemma 8.3.4. If the walk is symmetric, then

P (S2n = 0) = sup
z∈Zd

P (S2n = z) . (8.3.13)

Proof. We sum over the position at the nth step and use independence:

P (S2n = z) =
∑

y∈Zd

P (Sn = y, S2n = z)

=
∑

y∈Zd

P (Sn = y, S2n − Sn = z − y)

=
∑

y∈Zd

P (Sn = y)P (Sn = z − y) . (8.3.14)

By the Cauchy-Schwartz Inequality and a change of variable,
∑

y∈Zd

P (Sn = y)P (Sn = z − y) ≤
[ ∑

y∈Zd

P (Sn = y)2
] 1

2
[ ∑

y∈Zd

P (Sn = z − y)2
] 1

2

=
∑

y∈Zd

P (Sn = y)2 .

Now if the walk is symmetric then P (Sn = y) = P (Sn = −y), and so using again
(8.3.14) with z = 0, we get

∑

y∈Zd

P (Sn = y)2 =
∑

y∈Zd

P (Sn = y)P (Sn = −y) = P (S2n = 0) ,

which proves the claim. �

Below, ‖ · ‖ denotes Euclidian distance in Zd.
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Proof of Theorem 8.3.3: First consider d = 1: by Lemma 8.3.4,

1 =
∑

y∈Z:‖y‖≤2n

P (S2n = y) ≤ (4n+ 1)P (S2n = 0) ,

which gives P (S2n = 0) ≥ (4n + 1)−1. By (8.3.12), the walk is recurrent. For
d = 2, we proceed in the same way. A straightforward computation using inde-
pendence of the Xks yields E[‖S2n‖2] = 2n. By the Chebychev Inequality,

P (‖S2n‖ > 2
√
n) ≤ E[‖S2n‖2]

4n
=

1

2
.

One can thus proceed as before and obtain

1

2
≤ P (‖S2n‖ ≤ 2

√
n) =

∑

y∈Z2:‖y‖≤2
√
n

P (S2n = y) ≤ (8
√
n+ 1)2P (S2n = 0) .

By (8.3.12), the walk is recurrent. For d = 3, we need an upper bound. Let
ni ≥ 0, i ∈ {1, 2, 3}, be the number of positive steps done along the direction
ei. To be back at the origin after 2n steps, we must choose a triple (n1, n2, n3)
satisfying n1 + n2 + n3 = n, and then choose a path which contains, for each
i = 1, 2, 3, ni steps along +ei, and ni steps along −ei. There are

(
2n

n1 n1 n2 n2 n3 n3

)
=

(2n)!

(n1!n2!n3!)2

ways of doing so. Since each path has probability (1
6
)2n,

P (S2n = 0) =
∑

(n1,n2,n3):
n1+n2+n3=n

(2n)!

(n1!n2!n3!)2
1

62n

=
1

22n

(
2n

n

) ∑

(n1,n2):
0≤n1+n2≤n

[
n!

n1!n2!(n− n1 − n2)!

1

3n

]2

≤ 1

22n

(
2n

n

)
max

(n1,n2):
0≤n1+n2≤n

n!

n1!n2!(n− n1 − n2)!

1

3n
. (8.3.15)

We have used the fact that the numbers in the brackets add up to one.

Lemma 8.3.5. There exists C > 0 such that

max
(n1,n2):

0≤n1+n2≤n

n!

n1!n2!(n− n1 − n2)!

1

3n
≤ C

n
. (8.3.16)

Proof. As can be easily verified, the denominator in (8.3.16) decreases when
the difference between the three numbers n1, n2, n− n1 − n2 is reduced. One can
therefore bound the maximum over all triples in which each term lies within
distance at most one from n

3
. This implies that for large n, the Stirling Formula

can be used for each of the terms apearing in the ratio, which proves the lemma.
�
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Using the lemma and again the Stirling Formula for the first term in (8.3.15),

P (S2n = 0) ≤ D

n
3
2

.

With (8.3.12), we conclude that the simple random walk on Z3 is transient. The
proof that the walk is transient in higher dimensions is left as an exercise. �

Observe that all the estimates we have obtained above for P (S2n = 0) follow from
a more general Local Limit Theorem, valid in all dimension (see Exercise 8.19):

P (S2n = 0) ∼ 1√
(2πn)d

.

8.4. Equilibrium: Stationary Distributions

Theorems (8.3.1) and 8.3.2 give a first general picture of what the asymptotic
behaviour of a Markov chain looks like: starting from an arbitrary point x, it
either falls into one of the recurrence classes Rj, or remains transient forever.
Our next objective is to take a closer look at what can happen in each of these
cases. More precisely, we will look at things such at the average time spent
by the chain at each point x ∈ S, leading to the natural notion of invariant
measure. Before this we to introduce some notations for probability distributions
on (S,P(S)).

8.4.1. Invariant Measures. Let µ be a measure on (S,P(S)), i.e. a collec-
tion of non-negative numbers (µ(x))x∈S. To avoid misleading it with Eµ, which
acts on random variables living in another space, we denote the expectation, with
respect to µ, of a positive bounded measurable function f : S → R by either of
the symbols ∫

fdµ = µ(f) :=
∑

x∈S
µ(x)f(x) .

It is sometimes useful to think of functions f : S → R as column vectors and
of measures µ on S as row vectors. The expectation µ(f) can then be naturally
written as an inner product:

〈f, µ〉 :=
∑

x∈S
µ(x)f(x) .

If Q is a transition probability matrix, we define a new measure µQ by

µQ(x) :=
∑

y∈S
µ(y)Q(y, x) . (8.4.1)

Remembering (8.1.13):

Q(n)f(x) :=
∑

y∈S
Q(n)(x, y)f(y) , (8.4.2)

we have the following identity:

〈f, µQ〉 = 〈Qf, µ〉 .
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It does then make sense to say that Q act from the left on functions and from
the right on measures. If µ is a probability (i.e.

∑
x µ(x) = 1), then µQ is again

a probability. Going back to Markov chains: if µ is the probability distribution
of X0 for the Markov chain (Xn)n≥0 whose transition matrix is Q, i.e. Pµ(X0 =
x) = µ(x), then µQ is the distribution of X1. Indeed, by Lemma 8.1.1,

Pµ(X1 = x) =
∑

y∈S
Pµ(X1 = x,X0 = y) =

∑

y∈S
µ(y)Q(y, x) ≡ µQ(x) .

Similarly, the distribution of Xn is given by µQ(n):

Pµ(Xn = x) = µQ(n)(x) .

We see that understanding the large-n-behaviour of the chain goes through the
study of the limits

π(x) := lim
n→∞

µQ(n)(x) . (8.4.3)

Giving a meaning to (8.4.3), conditions under which this limit exists, and its
possible independence of µ, will be done in details later.

There is also a formula for the expectation of f(Xn) with respect to Eµ:

Eµ(f(Xn)) =
∑

x∈S
Pµ(Xn = x)f(x) = µQ(n)(f) . (8.4.4)

(8.4.4) says that the expectation of an observable made on the evolution can be
obtained by an expectation of this observable over S with respect to the measure
µQ(n). Observe that µQ(n)(f) = 〈f, µQ(n)〉 = 〈Q(n)f, µ〉 = µ(Q(n)f). To motivate
the following definition, assume for a while that the limit defining π in (8.4.3)
exists for all x ∈ S. Then for all bounded f ,

〈f, πQ〉 = 〈Qf, π〉 = lim
n→∞

〈Qf, µQ(n)〉 = lim
n→∞

〈f, µQ(n+1)〉 = 〈f, π〉 ,

which implies that πQ = π. This motivates the following definition.

Definition 8.4.1. Let Q be a transition matrix, µ a measure on (S,P(S)). If

µQ = µ , (8.4.5)

then µ is called invariant with respect to Q.

(8.4.5) is sometimes called the balance relation. Consider the random walk of
Example 8.1.3, with Q(x, y) = p(y−x). Then the counting measure (µ(x) = 1 for
all x) is invariant:

µQ(x) =
∑

y∈S
Q(y, x) =

∑

y∈S
p(y − x) = 1 = µ(x) .

By induction we see that if µ is invariant, then µQ(n) = µ for all n ≥ 1. Moreover,
when the initial distribution µ of a Markov chain (Xn)n≥0 with transition matrix
Q is invariant under Q, then Xn has the same distribution as X0. Namely, by
(8.4.4),

Eµ(f(Xn)) = µQ(n)(f) = µ(f) ≡ Eµ(f(X0)) .
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In such a case, i.e. when the distribution of the chain is insensitive to the evolu-
tion under the transition matrix Q, we say that Xn is at equilibirum for all n ≥ 1.
Invariant measures will play an important role in the study of the asymptotics of
the chain.

We will first be interested in the existence of invariant measures, then of invariant
probability measures, and then we shall move on to the study of the existence of
the limits (8.4.3).

8.4.2. Existence of Invariant Measures. Finding an invariant measure
means, for the time being, solving a system of equations for (µ(x))x∈S:

µ(x) =
∑

y∈S
µ(y)Q(y, x) ∀x ∈ S .

Definition 8.4.2. A measure µ is reversible (with respect to Q) if

µ(x)Q(x, y) = µ(y)Q(y, x) ∀x, y ∈ S . (8.4.6)

The set relations (8.4.6) are sometimes called the relation of detailed balance, since
it is stronger than (8.4.5). Observe that if µ is reversible, then for all x ∈ S,

µQ(x) =
∑

y∈S
µ(y)Q(y, x) =

∑

y∈S
µ(x)Q(x, y) = µ(x) .

We have thus shown

Lemma 8.4.1. If µ is reversible, then it is invariant.

This result gives an easy way of finding invariant measures. For example, consider
the uniform random walk on the graph, introduced in Example 8.1.4. Then the
measure µ(x) := |Ax| is invariant. Namely, if {x, y} ∈ E,

µ(x)Q(x, y) = |Ax|
1

|Ax|
= 1 = |Ay|

1

|Ay|
= µ(y)Q(y, x) .

Another example is the simple random walk on Z with Q(x, x + 1) = p < 1. It
easy to verify, using the above criterium, that the measure

µ(x) =
( p

1− p

)x
, ∀x ∈ Z

is invariant. Observe that µ(x) is bounded if and only if p = 1
2
. When p > 1

2

(resp. p < 1
2
), then µ gives unbounded weight to points far to the right (resp.

left), which reflects the transience of the walk. As an exercise, the reader can also
compute an invariant measure for the Ehrenfest Model of Example 8.1.5 (Exercise
8.24).

The following result shows that the existence of at least one recurrent point x
guarantees the existence of an invariant measure.
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Theorem 8.4.1. Let x ∈ S be recurrent. For all y ∈ S, define

νx(y) := Ex

[ Tx−1∑

k=0

1{Xk=y}

]
≡ Ex[Ny, Ty < Tx] . (8.4.7)

Then νx is an invariant measure 2. Moreover, νx(y) > 0 if and only if y belongs
to the recurrence class of x. Finally, νx(y) <∞ for all y ∈ S.

Proof. Observe that νx(x) = Ex(1) = 1. We compute, for all z ∈ S,
∑

y∈S
νx(y)Q(y, z) =

∑

y∈S

∑

k≥0

Ex[1{k<Tx}1{Xk=y}]Q(y, z)

=
∑

y∈S

∑

k≥0

Ex[1{k<Tx}1{Xk=y}1{Xk+1=z}] (8.4.8)

=
∑

k≥0

Ex[1{k<Tx}1{Xk+1=z}] .

This identity (8.4.8) is justified by observing that, since 1{k<Tx}1{Xk=y} is Fk-
measurable, the Markov Property at time k gives

Ex[1{k<Tx}1{Xk=y}1{Xk+1=z}] = Ex[1{k<Tx}1{Xk=y}1{X1=z} ◦ θk]
= Ex[1{k<Tx}1{Xk=y}EXk

[1{X1=z}]]

= Ex[1{k<Tx}1{Xk=y}Ey[1{X1=z}]]

= Ex[1{k<Tx}1{Xk=y}]Q(y, z) .

Now, if z 6= x, then clearly 1{k<Tx}1{Xk+1=z} = 1{k+1<Tx}1{Xk+1=z}, and so

∑

y∈S
νx(y)Q(y, z) =

∑

k≥0

Ex[1{k+1<Tx}1{Xk+1=z}] = Ex

[ Tx−2∑

k=0

1{Xk+1=z}

]
= νx(z) .

On the other hand, when z = x, then Ex[1{k<Tx}1{Xk+1=x}] = Px(Tx = k+1), and
so, since x is recurrent,

∑

y∈S
νx(y)Q(y, x) =

∑

k≥0

Px(Tx = k + 1) = Px(Tx <∞) = 1 = νx(x) .

This proves that νx is invariant. Then, if y belongs to the recurrence class of x,
there exists some m ≥ 1 such that Q(m)(x, y) > 0, and so

νx(y) =
∑

z∈S
νx(z)Q

(m)(z, y) ≥ νx(x)Q
(m)(x, y) > 0 .

On the other hand, if y is not in the recurrence class of x, then Ny = 0 i.e.
1{Xk=y} = 0 for all k ≥ 0 Px-a.s. by Theorem 8.3.1, and so νx(y) = 0. To show

that νx(y) is finite, observe that invariance of νx implies that νx = νxQ
(n) for all

n ≥ 1. In particular,

1 = νx(x) = νxQ
(n)(x) ≥ νx(y)Q

(n)(y, x) ∀y ∈ S ,

2To see that νx is not completely trivial, i.e. that νx(y) < ∞ for all y ∈ S, see [R.88] p. 301.
of Neveu p. 50.
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which implies νx(y) < ∞ if n ≥ 1 is such that Q(n)(y, x) > 0. But this is true
for at least one n when y belongs to the recurrence class of x. If y is not in the
recurrence class of x, we have νx(y) = 0 <∞, as seen above. �

Observe that if there is more than one recurrence class, then the theorem above
allows to construct invariant measures with disjoint supports.

Theorem 8.4.2. Let the chain be irreducible and all points be recurrent. Then
the invariant measure (which exists by Theorem 8.4.1) is unique, up to a multi-
plicative constant.

Proof. Let x ∈ S and consider the invariant measure νx of Theorem 8.4.1.
We will show that for any other invariant measure µ,

µ(y) ≥ µ(x)νx(y) ∀y ∈ S . (8.4.9)

Assume for a while that this is true. We have, for all n ≥ 1,

µ(x) =
∑

z∈S
µ(z)Q(n)(z, x) ≥

∑

z∈S
µ(x)νx(z)Q

(n)(z, x) = µ(x) ,

which gives ∑

z∈S
[µ(z)− µ(x)νx(z)]Q

(n)(z, x) = 0 .

Therefore, µ(z) = µ(x)νx(z) each time Q(n)(z, x) > 0 for some n ≥ 1. But this is
guaranteed by the irreducibility of the chain. Therefore, µ = cνx, with c = µ(x),
proving the theorem. To obtain (8.4.9), we will show, by induction on p ≥ 0,
that (a ∧ b := min{a, b})

µ(y) ≥ µ(x)Ex

[ p∧(Tx−1)∑

k=0

1{Xk=y}

]
. (8.4.10)

From this, (8.4.9) follows by taking p→ ∞. The inequality (8.4.10) is an equality
when y = x, so we may always consider y 6= x. For p = 0, the inequality is trivial.
Assuming (8.4.10) holds for p,

µ(y) =
∑

z∈S
µ(z)Q(z, y) ≥ µ(x)

∑

z∈S
Ex

[ p∧(Tx−1)∑

k=0

1{Xk=z}

]
Q(z, y)

= µ(x)
∑

z∈S

p∑

k=0

Ex[1{k<Tx}1{Xk=z}]Q(z, y) .

= µ(x)
∑

z∈S

p∑

k=0

Ex[1{k<Tx}1{Xk=z}1{Xk+1=y}] (8.4.11)

= µ(x)

p∑

k=0

Ex[1{k<Tx}1{Xk+1=y}]
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In (8.4.11) we used the Markov Property, as in the proof of Theorem 8.4.1. Now,
since y 6= x,

p∑

k=0

Ex[1{k<Tx}1{Xk+1=y}] =

p∑

k=0

Ex[1{k+1<Tx}1{Xk+1=y}]

=

p+1∑

l=1

Ex[1{l<Tx}1{Xl=y}] = Ex

[ (p+1)∧(Tx−1)∑

l=0

1{Xl=y}
]
.

This proves (8.4.10) for p+ 1. �

Now that the existence and uniqueness of invariant measures is settled, we turn
to the problem of determining whether there exist finite measures, i.e. for which
µ(S) < ∞, or, which is equivalent, to finding probability distributions on S

invariant under Q. This will require a further distinction among recurrent points.
Before this, we give a simple result showing that invariant probability measures
concentrate on recurrent points. From now on, invariant probability measures
will be denoted by π.

Lemma 8.4.2. Assume there exists an invariant probability π, then each point
x ∈ S with π(x) > 0 is recurrent.

Proof. Since π is invariant we have πQ(n) = π for all n ≥ 1. Assume
π(x) > 0. Then, using Fubini’s Theorem and recalling the definition (8.3.6),

∞ =
∑

n≥1

π(x) =
∑

n≥1

∑

y∈S
π(y)Q(n)(y, x) ≤

∑

y∈S
π(y)u(y, x) ≤ u(x, x) .

We used (3) of Lemma 8.3.2 and the fact that π is a probability. By (2) of the
same lemma, we conclude that x is recurrent. �

Proposition 8.4.1. If the chain is irreducible and if there exists an invariant
probability π, then it has the form

π(x) =
1

Ex(Tx)
∀x ∈ S . (8.4.12)

Proof. If there exists an invariant probability, then all points are recurrent.
Indeed, if there existed a transient point then all points would be transient (since
the chain is irreducible), and so π(x) = 0 for all x by Lemma 8.4.2, a contradiction.
We choose any x ∈ S and show that π(x) has the form (8.4.12). By Theorem
8.4.1 there exists an invariant measure νx, given in (8.4.7). By Theorem 8.4.2
the invariant measure is unique up to a multiplicative constant. Therefore, if
there exists an invariant probability π, then the total mass of νx must be finite,
νx(S) <∞, and π have the form π = νx

νx(S)
. But

νx(S) =
∑

y∈S
νx(y) = Ex

[ Tx−1∑

k=0

∑

y∈S
1{Xk=y}

]
≡ Ex(Tx) .

In particular, π(x) = νx(x)
Ex(Tx)

= 1
Ex(Tx)

. This shows the theorem. �
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The previous result shows that for an invariant measure to exist, one must have
Ex(Tx) < ∞ for all recurrent point x. This leads to the following distinction
among recurrent points.

Definition 8.4.3. A recurrent point x ∈ S is called

• positive-recurrent if Ex(Tx) <∞,
• null-recurrent if Ex(Tx) = ∞.

For example, the simple symmetric random walk on Z is recurrent, but null-
recurrent, as we saw in Theorem 6.1.1. Positive recurrence is a class property:
points belonging to the same recurrence class are either all positive-recurrent, or
all null-recurrent.

Lemma 8.4.3. Let the chain be irreducible. Then the following are equivalent.

(1) There exists one positive-recurrent point x ∈ S.
(2) There exists an invariant probability π.
(3) All points x ∈ S are positive-recurrent.

Proof. (1) implies (2): Assume x ∈ S is positive-recurrent. Consider the
invariant measure νx. Then νx(S) = Ex[Tx] < ∞, and so π := νx(S)

−1νx is an
invariant probability. (2) implies (3): As we saw in Lemma 8.4.2, the existence
of an invariant probability implies that π(x) > 0 for all x. But π(x) = Ex[Tx]

−1

by Proposition 8.4.1, and so Ex[Tx] <∞. (3) implies (1) trivially. �

We gather the results about invariant for irreducible chains in a theorem.

Theorem 8.4.3. Let the chain be irreducible and all points be recurrent. Then

(1) either each point is positive-recurrent, and there exists a unique invariant
probability measure π, π(S) = 1, given by

π(x) =
1

Ex(Tx)
∀x ∈ S , (8.4.13)

(2) or each point is null-recurrent, and any invariant measure µ has infinite
mass (µ(S) = ∞).

8.5. Approach to Equilibrium

We now turn to the study of how equilibrium is approached along the time evo-
lution of a Markov chain. Our main purpose is to show that the distribution of
the chain converges, in the limit n→ ∞, to the invariant measure constructed in
Theorem 8.4.3. We will therefore study the limits which appeared in (8.4.3). A
detailed study of the convergence to equilibrium can be found in [Str05].

The convergence of distribution will be in the sense of the total variation norm,
defined, for each ρ : S → R, by

‖ρ‖TV :=
∑

x∈S
|ρ(x)| . (8.5.1)
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We will say that a sequence of measures (µn)n≥1 on (S,P(S)) converges to µ if
‖µn−µ‖TV → 0. As a short hand, we write µn⇒µ. Our aim is to find under which
conditions can one obtain, for a recurrent chain with unique invariant probability
π,

µQ(n) ⇒ π .

We will present a standard proof based on a coupling argument.

Consider a Markov chain with state space S and transition matrix Q. A coupling
consists in building two copies of this chain on the cartesian product S := S ×S.
We endow S with the σ-field P(S). If µ, ν are probability distributions on S, µ⊗ν
denotes the probability distribution on S defined by (µ ⊗ ν)(x, y) := µ(x)ν(y).
We then define the following transition matrix on S:

Q((x, y), (x′y′)) := Q(x, x′)Q(y, y′) . (8.5.2)

By Theorem 8.1.2, we can construct a canonical version of a Markov chain
(Xn, Yn)n≥0 with state space S, initial distribution µ⊗ν and transition matrix Q.
We denote the associated measure by Pµ⊗ν . It is clear that under Pµ⊗ν , the cou-
pled chain (Xn, Yn)n≥0 describes two independent copies of the original markov
chain. Its marginals are given by

Pµ⊗ν(Xn+1 = x′|Xn = x) = Q(x, x′) , Pµ⊗ν(Xn = x) = µQ(n)(x) ,

Pµ⊗ν(Yn+1 = y′|Yn = y) = Q(y, y′) , Pµ⊗ν(Yn = y) = νQ(n)(y) .

A key idea is then to choose ν := π, where π is the invariant measure of Q. This
implies that under Pµ⊗ν , (Yn)n≥0 is at equilibrium for all n ≥ 0:

Pµ⊗π(Yn = y) = πQ(n)(y) = π(y) = Pµ⊗π(Y0 = y) .

Therefore,

Pµ(Xn = y)− π(y) = Pµ⊗π(Xn = y)− Pµ⊗π(Yn = y)

= Eµ⊗π

[
1{Xn=y} − 1{Yn=y}

]
.

Let now T define the stopping time at which Xn and Yn meet for the first time:

T := inf{n ≥ 1 : Xn = Yn} .
In other words, T is the first time the chain (Xn, Yn)n≥0 hits the diagonal {(x, x) :
x ∈ S}. The point is that if the two chains meet at some time N , then the Markov
Property implies that they become probabilistically undistinguishable for times
> N . We therefore decompose the last expectation with respect to the stopping
time T and to the position of the chain at time T:

Eµ⊗π

[
1{Xn=y} − 1{Yn=y}

]
= Eµ⊗π

[
1{T>n}(1{Xn=y} − 1{Yn=y})

]

+
n∑

k=1

∑

z∈S
Eµ⊗π

[
1{T=k,Xk=Yk=z}(1{Xn=y} − 1{Yn=y})

]
.
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This last sum is zero. Indeed, using twice the Markov Property at time k,

Eµ⊗π[1{T=k,Xk=Yk=z}1{Xn=y}] = Eµ⊗π[1{T=k,Xk=Yk=z}1{Xn−k=y} ◦ θk]
= Eµ⊗π[1{T=k,Xk=Yk=z}]Q

(n−k)(z, y)

= Eµ⊗π[1{T=k,Xk=Yk=z}1{Yn−k=y} ◦ θk]
= Eµ⊗π[1{T=k,Xk=Yk=z}1{Yn=y}] .

Therefore,
∑

y∈S
|Pµ(Xn = y)− π(y)| =

∑

y∈S

∣∣Eµ⊗π

[
1{T>n}(1{Xn=y} − 1{Yn=y})

]∣∣

≤ 2
∑

y∈S
Eµ⊗π[1{T>n}1{Yn=y}] = 2Pµ⊗π(T > n) ,

We are left with
‖µQ(n) − π‖TV ≤ 2Pµ⊗π(T > n) , (8.5.3)

which is the standard coupling inequality. We will thus obtain µQ(n) ⇒ π if we can
show that the chain (Xn, Yn)n≥0 is recurrent. The most general way of obtaining
this recurrence is under a condition on the chain S called aperiodicity, to which
we shall turn in a while. Before this we consider a more restrictive condition, but
which gives a rate of convergence for the speed at which ‖µQ(n) − π‖TV → 0.

Lemma 8.5.1. Assume the chain S satisfies the following condition: there exists
ℓ ≥ 1 such that

inf
x,y∈S

Q(ℓ)(x, y) ≥ δ > 0 . (8.5.4)

Then, for all probability distributions µ, ν, we have

Pµ⊗ν(T > kℓ) ≤ (1− δ)k , ∀k ≥ 1 . (8.5.5)

Proof. We will prove the lemma for Dirac masses µ = δx, ν = δy, in which
case the measure is denoted P(x,y). That is, we will show that for all k ≥ 1,

P(x,y)(T > kℓ) ≤ (1− δ)k , ∀(x, y) ∈ S . (8.5.6)

The general case (8.5.5) then follows by summation over (x, y) ∈ S 3. We show
(8.5.6) by induction on k. Consider first the case k = 1. For any pair (x, y), we
have, by (8.5.4),

P(x,y)(T ≤ ℓ) ≥ P(x,y)(Xℓ = Yℓ) =
∑

z∈S
P(x,y)(Xℓ = Yℓ = z)

=
∑

z∈S
Q(ℓ)(x, z)Q(ℓ)(y, z) ≥ δ

∑

z∈S
Q(ℓ)(y, z) = δ ,

which shows (8.5.6) for k = 1. Assume then that (8.5.6) holds for k and for all
pair (x, y). Then,

P(x,y)(T > (k + 1)ℓ) =
∑

(s,t)∈S
P(x,y)(T > (k + 1)ℓ,Xkℓ = s, Ykℓ = t) .

3A mettre en exercice!
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Using the Markov Property at time kℓ,

P(x,y)(T > (k+1)ℓ,Xkℓ = s, Ykℓ = t) = P(x,y)(T > kℓ,Xkℓ = s, Ykℓ = t)P(s,t)(T > ℓ) .

Using P(s,t)(T > ℓ) ≤ 1 − δ, resumming over (s, t) ∈ S and using the induction
hypothesis yields (8.5.6) for k + 1. �

A direct corollary is then

Theorem 8.5.1. Assume the chain S is irreducible and positive recurrent and
satisfies (8.5.4) for some δ > 0, ℓ ≥ 1. Let π denote the unique invariant
probability measure. Then

‖µQ(n) − π‖TV ≤ 2(1− δ)⌊
n
ℓ
⌋ (8.5.7)

uniformly in all initial distribution µ. In particular, µQ(n) ⇒ π.

To emphasize the fact that a chain as above forgets about its initial condition,
consider two distinct initial distributions µ, µ′. By the triangle inequality,

‖µQ(n) − µ′Q(n)‖TV ≤ ‖µQ(n) − π‖TV + ‖π − µQ(n)‖TV → 0 ,

and so the distribution of Xn with initial distribution µ becomes, asymptotically,
indistinguishable from the one started with µ′.

Assumption (8.5.4) is a strong mixing condition. It forces trajectories to meet,
in the sense that any pair of points (x, y) can be joined during a time interval
of length ℓ with positive probability. This implies that two trajectories meet at
some of the times ℓ, 2ℓ, 3ℓ, . . . , and so the coupled chain S is recurrent. Clearly,
(8.5.4) is not realistic when S is infinite, and one can cook up simple examples in
which it is not satisfied even in case where S is finite. Consider for example the
case where S are the vertices of a square, where the particle can jump to either
of its two nearest neighbours with probability 1

2
.

Definition 8.5.1. Let x ∈ S be recurrent. Let I(x) := {n ≥ 1 : Q(n)(x, x) > 0}
be the set of times at which a return to x is possible when starting from x. The
greatest common divisor of I(x), denoted d(x), is called the period of x.

Since x is recurrent, u(x, x) = ∞ > 0, and so Q(n)(x, x) > 0 for infinitely many ns.
Therefore, I(x) contains an infinite number of numbers. Moreover, observe that
I(x) is stable under addition: if n,m ∈ I(x) then by the Chapman-Kolmogorov
Equation (8.2.3),

Q(n+m)(x, x) ≥ Q(n)(x, x)Q(m)(x, x) > 0 ,

and so n+m ∈ I(x).

Lemma 8.5.2. If x, y ∈ S belong to the same recurrence class, then d(x) = d(y).

Proof. Since x, y are in the same class, there exists K ≥ 1 such that
Q(K)(x, y) > 0 and L ≥ 1 such that Q(L)(y, x) > 0. Therefore,

Q(K+L)(y, y) ≥ Q(L)(y, x)Q(K)(x, y) > 0 ,
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which means thatK+L ∈ I(y), and therefore, d(y) dividesK+L. Then, consider
any n ∈ I(x). We have

Q(K+n+L)(y, y) ≥ Q(L)(y, x)Q(n)(x, x)Q(K)(x, y) > 0 ,

which means that K + n + L ∈ I(y) and therefore, d(y) divides K + n + L.
Therefore, d(y) divides n. Since this holds for all n ∈ I(x), d(y) is a divisor of
I(x). As a consequence, d(y) divides d(x). Changing the roles of y and x shows
that d(x) divides d(y), and so d(x) = d(y). �

Lemma 8.5.3. If d(x) = 1, then there exists m0 such that Q(n)(x, x) > 0 for all
n ≥ m0.

Proof. We first show that when d(x) = 1, I(x) must contain two consecutive
integers. So let n0, n0 + k ∈ I(x). If k = 1 then there is nothing to do. If k > 1
then (since k > d(x)) there must exist some l ∈ I(x) which k does not divide.
Write l = km+r, 0 < r < k. Since I(x) is stable under addition, the two numbers
(m + 1)(n0 + k), (m + 1)n0 + n1, are both in I(x). But these numbers differ by
less than k:

(m+ 1)(n0 + k)− (m+ 1)n0 + n1 = (m+ 1)k − (km+ r) = k − r < k .

Proceeding by induction we finally obtain a number N such that {N,N + 1} ∈
I(x). Let m0 := N2. Then each n ≥ N2 can be written as n = N2 + kN + r for
some k ≥ 0, 0 ≤ r < N . We can therefore write n as n = (N+1)r+N(N−r+k),
which shows that n ∈ I(x). �

This lemma says that any point with d(x) = 1 can come back to its original
position in an arbitray number n of steps, as long as n is sufficiently large. This
clearly means that if two independent walks are started at points x, x′ with d(x) =
d(x′) = 1, they can meet at any y ∈ S at time n with positive probability, as
soon as n is taken sufficiently large. Of course, depending on x, y, n might have
to be taken larger. This shows that imposing d(x) = 1 for all x ∈ S leads to the
same recurrence property as (8.5.4), without uniformity in x, y.

Definition 8.5.2. If d(x) = 1 for all x ∈ S, the chain is called aperiodic.

Aperiodicity is an algebraic property that turns all initial conditions equivalent;
it does entail that two trajectories started at two different points have a positive
probability of meeting along the evolution, but only just (with no uniformity on
the time or points). This is enough to guarantee convergence to equilibrium.

Theorem 8.5.2. Let the chain be irreducible and aperiodic. Assume π is an
invariant probability. Then for all initial distribution µ,

‖µQ(n) − π‖TV → 0 .

Proof. We first show that S is irreducible. So let (x, y), (x′, y′) be points in S.
Since the original chain is irreducible there exist K ≥ 1 such that Q(K)(x, x′) > 0
and L ≥ 1 such that Q(L)(y, y′) > 0. By Lemma 8.5.3 there exists n0 ≥ 1 such
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that Q(n)(x, x) > 0 for all n ≥ n0, and m0 ≥ 1 such that Q(m)(y, y) > 0 for all
m ≥ m0. For all n ≥ max{n0,m0}, we have

Q(K+L+n)((x, y), (x′, y′)) = Q(K+L+n)(x, x′)Q(K+L+n)(y, y′)

≥ Q(L+n)(x, x)Q(K)(x, x′)Q(K+n)(y, y)Q(L)(y, y′) > 0 .

Then, since π⊗π is an invariant probability forQ, the chain S is recurrent (Lemma
8.4.2). By the coupling inequality (8.5.3), this shows that ‖µQ(n)−π‖TV → 0. �

Observe that there exists a chain which is irreducible, aperiodic, recurrent, but
in which two copies don’t necessarily meet (see [R.88] p. 313).

8.6. The Ergodic Theorem

The notion of invariant measure, together with the convergence properties de-
scribed in Theorems 8.5.1 and 8.5.2, gives a fairly satisfactory description of the
asymptotic behaviour of an irreducible Markov chain. What still needs to be
done is to see how the empirical quantities relate to this asymptotic behaviour.
For example: what is, up to time n, the time spent by a chain at a site y ∈ S?

Theorem 8.6.1 (Ergodic Theorem). Assume the chain is irreducible and positive
recurrent. Let π denote the unique invariant probability measure, and consider
a non-negative function f : S → R, integrable with respect to π:

∫
|f |dπ < ∞.

Then for all x ∈ S,

1

n

n−1∑

k=0

f(Xk) −→
∫
fdπ , Px-a.s. (8.6.1)

This results answers the previous question (in the case of an irreducible, positive
recurrent chain). Namely, take f = δy. Then

∫
fdπ = π(y) and by (8.6.1), the

fraction of time spent by the chain at y is

1

n
♯{0 ≤ k ≤ n− 1 : Xk = y} =

1

n

n−1∑

k=0

1{Xk=y} −→ π(y) , Px-a.s. (8.6.2)

This is very different from the convergence obtained in the previous section.
Namely, in the aperiodic case for example, we had obtained ‖µQ(n) − π‖TV → 0,
which implies Pµ(Xn = y) → π(y) for all y ∈ S, which is a probability of what
happens at time n. On the other hand, (8.6.2) gives an almost sure convergence
of the time the trajectory spends at y up to time n.

Proof of Theorem 8.6.1: Let x ∈ S. We consider the partition of the
trajectory into the successive returns of the chain at x:

0 =: T 0
x < T 1

x < T 2
x < . . . ,

where T 1
x := Tx, and for k ≥ 2,

T k
x := inf{n > T k−1

x : Xn = x} .
Since the chain is irreducuble and since there exists an invariant probability,
the chain is recurrent (Lemma 8.4.2), and each T k

x is Px-almost surely finite. The
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result will follow from the fact that the events happening during the time intervals
[T k

x , T
k+1
x ) are independent, and from the Law of Large Numbers. Fix f : S → R

and define, for all k ≥ 0,

Zk :=

T
(k+1)
x −1∑

j=T
(k)
x

f(Xj) .

Clearly, Zk = Z0 ◦ θT (k)
x

.

Lemma 8.6.1. The sequence (Zn)n≥0 is i.i.d.

Proof. First observe that for all positive measurable bounded g : R → R,

the Markov Property at time T
(k)
x gives

Ex[g(Zk)] = Ex[(g ◦ Z0) ◦ θT (k)
x

] = Ex[g(Z0)] ,

and so the Zks are identically distributed. For the independence, it is sufficient
to show that for all k ≥ 0,

Ex[g0(Z0) . . . gk(Zk)] = Ex[g0(Z0)] . . . Ex[gk(Z0)] , (8.6.3)

where gj : R → R, j = 0, 1, . . . , k are arbitrary bounded functions. This is
trivially true when k = 0, so assume (8.6.3) holds for k − 1. Using again the

Markov property at time T
(k)
x and the induction hypothesis,

Ex[g0(Z0) . . . gk(Zk)] = Ex[g0(Z0) . . . gk−1(Zk−1)]Ex[gk(Z0)]

= Ex[g0(Z0)] . . . Ex[gk(Z0)] .

This shows (8.6.3) for k. �

Now, observe that since π is invariant it must have the form π = π(x)νx for all
x, where νx is the invariant measure of Theorem 8.4.1. This implies that

Ex[|Z0|] = Ex[Z0] = Ex

[ Tx−1∑

j=0

f(Xj)
]

=
∑

y∈S
f(y)Ex

[ Tx−1∑

j=0

1{Xj=y}

]

=

∫
fdνx =

1

π(x)

∫
fdπ <∞ .

Therefore, by the Strong Law of Large Numbers,

1

n

n−1∑

k=0

Zk −→
1

π(x)

∫
fdπ Px-a.s. (8.6.4)

Let Nx(n) be the number of visits of the chain at x up to time n. Then T
Nx(n)
x ≤

n < T
Nx(n)+1
x , and since f is non-negative,

1

Nx(n)

T
Nx(n)
x −1∑

k=0

f(Xk) ≤
1

Nx(n)

n∑

k=0

f(Xk) ≤
1

Nx(n)

T
Nx(n)
x +1∑

k=0

f(Xk) ,
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which is the same as

1

Nx(n)

Nx(n)−1∑

j=0

Zj ≤
1

Nx(n)

n∑

k=0

f(Xk) ≤
1

Nx(n)

Nx(n)∑

j=0

Zj ,

By (8.6.4) and since Nx(n) → ∞ Px-a.s. when n→ ∞ (Proposition 8.3.1),

1

Nx(n)

n∑

k=0

f(Xk) −→
∫
fdνx .

The same expression with f = 1 gives n
Nx(n)

→ νx(S) = 1
π(x)

. This finishes the

proof. �

8.7. Exercises

Generalities.

Exercise 8.1. [GS05] p. 219. A Die is rolled repeatedly. Which of the following
are Markov chains? For those that are, supply the transition matrix.

• The largest number Xn shown up to time n.
• The number Nn of sixes in n rolls.
• At time r, the time Cr since the most recent six.
• At time r, the time Br until the next six.

Exercise 8.2. [GS05] p. 219. Let (Xn)n≥0 be the simple random walk starting
at the origin. Are (|Xn|)n≥0 and (Mn)n≥0 Markov chains? (We defined Mn :=
max{Xk : 0 ≤ k ≤ n}.) When this is the case, compute the transition matrix.
Show that Yn :=Mn −Xn defines a Markov chain. What happens if X0 6= 0.

Exercise 8.3. [GS05] p. 220. Let Xn, Yn be Markov chains on S = Z. is
Xn + Yn necessarily a Markov chain?

Exercise 8.4. [GS05] p. 220. Let Xn be a Markov chain. Show that for all
1 < r < n,

P (Xr = x|Xi = xi, i = 1, 2, . . . , r − 1, r + 1, . . . , n)

= P (Xr = x|Xr−1 = xr−1, Xr+1 = xr+1) .

Exercise 8.5. Consider “Markov’s Other chain” ([GS05] p. 218): let Y1, Y3, Y5, . . .
be a sequence of independent identically distributed random variables such that

P (Y2k+1 = −1) = P (Y2k+1 = +1) =
1

2
.

Define then Y2k := Y2k−1Y2k+1. Check that Y2, Y4, Y6, . . . are identically dis-
tributed, with the same distribution as above. Is (Yk)k≥1 a Markov chain? En-
large the state space to {±1}2 and define Zn := (Yn, Yn+1).

Exercise 8.6. [R.88] p.281. Two state Markov chain. Let S = {0, 1} with
transition matrix

Q =

[
1− α α

β 1− β

]


