
CHAPTER 3

Dynkin Systems

Let Ω be any non-empty set. We denote by 2Ω the family of all subsets of Ω,
including the emptyset.

Definition 3.0.1. A collection D ⊂ 2Ω is called a Dynkin System (or simply
D-system) if the following conditions hold:

(1) Ω ∈ D.
(2) If A,B ∈ D, A ⊂ B, then B\A ∈ D.
(3) If An ∈ D for all n ≥ 1, An ր A, then A ∈ D

Observe that D-systems are stable by complementation since A ∈ D implies
Ac = Ω\A ∈ D. Since B\A = B ∩ Ac, σ-algebras are D-systems, but D-systems
are not necessarily stable under intersections.

Lemma 3.0.1. A collection F ⊂ 2Ω is a σ-algebra if and only if it is a D-system
stable under intersection.

Proof. The “only if” part is trivial. Then, assume F is a D-system stable
under intersection. Let A,B ∈ F. We have A∪B = (Ac∩Bc)c = Ω\(Ac∩Bc) ∈ F.
Let An ∈ F, Bn :=

⋃n

k=1
Ak. Since Bn ∈ F and Bn ր

⋃
n≥1

Bn, we have that⋃
n≥1

Bn ∈ F. This shows that F is a σ-algebra. �

As can be easily verified, the intersection of an arbitrary family of D-systems is
a D-system. Therefore, given any collection C ⊂ 2Ω, one can define the smallest
D-system containing C, called the D-system generated by C, denoted D(C). In
practice, it is interesting to compare the D-system D(C) with the σ-algebra σ(C).
One clearly has D(C) ⊂ σ(C).

Theorem 3.0.1. If C ⊂ 2Ω is stable under intersection, then D(C) = σ(C).

Proof. To simplify the notations, denote D(C) by D and σ(C) by F. We
already saw that D ⊂ F. To show that D ⊃ F, it suffices to verify that D is a σ-
algebra. By Lemma 3.0.1, it suffices to verify that D is stable under intersection.
Define D1 := {B ∈ D : B ∩ C ∈ D ∀C ∈ C}. We verify that D1 = D. By
definition, D1 ⊂ D. To verify that D1 ⊃ D, it suffices to see that D1 is a D-
system containing C. Now D1 ⊃ C follows from the fact that C is closed under
intersection. This also implies that Ω ∈ D1. Let B1, B2 ∈ D1, B1 ⊂ B2, C ∈ C.
Then

(B2\B1) ∩ C = B2 ∩ C ∩ (Bc
1 ∪ Cc) = (B2 ∩ C)\(B1 ∩ C) ∈ D
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Then, if Bn ∈ D1, Bn ր B, then B ∩ C =
⋃

n(Bn ∩ C) ∈ D, logo B ∈ D1. This
proves that D is a D-system.
Define D2 := {A ∈ D : A ∩ B ∈ D ∀B ∈ D}. We verify that D2 = D, which
will show that D is stable under intersection. By the first step, D2 contains
C. As before, one can show that D2 = D. This shows that D is stable under
intersection, and finishes the proof of the theorem. �

The previous result is usually used in the following form:

Corollary 3.0.1. Let C ⊂ 2Ω be stable under intersection. If D is a D-system
containing C, then D ⊃ σ(C).

The last result is useful to show that the measurable sets of some σ-algebra F

satisfy particular property. An example of application is given in the following
proposition and its corollary.

Proposition 3.0.1. Let (Ω,F, P ) be a probability space, and let A1, . . . ,An

(Ak ⊂ F) be independent collections 1, each of which is stable under intersec-
tion. Then the σ-algebras σ(A1), . . . , σ(An) are independent.

Proof. Without loss of generality, we can suppose that each Ak contains Ω.
We will show that if A1,A2, . . . ,An are independent and stable under intersection,
then σ(A1),A2, . . . ,An are independent (and stable under intersection). The
proof then follows by induction. Fix A2 ∈ A2, . . . , An ∈ An, set F := A2 ∩ · · · ∩
An and let DF := {A ∈ A1 : P (A ∩ F ) = P (A)P (F )}. We have DF ∋ Ω.
Then, let A,B ∈ DF with A ⊂ B: P ((B\A) ∩ F ) = P (B\A)P (F ), and so
B\A ∈ DF . Finally, if An ∈ DF , An ր A, then P (A ∩ F ) = limn P (An ∩ F ) =
limn P (An)P (F ) = P (A)P (F ), and so A ∈ DF . This shows that DF is a D-
system. Since DF ⊃ A1, Corollary 3.0.1 gives DF ⊃ σ(A1). Since this holds for
all choice of F , we have shown that σ(A1),A2, . . . ,An are independent. �

Corollary 3.0.2. Let F1, . . . ,Fn be independent sub-σ-algebras (Fk ⊂ F for all
k). Then, for any 1 ≤ k ≤ n, σ(F1, . . . ,Fk) and σ(Fk+1, . . . ,Fn) are independent.

Proof. Let A be the collection of all intersections
⋂k

j=1
Aj with Aj ∈ Fj,

and B be the collection of all intersections
⋂n

j=k+1
Bj with Bj ∈ Fj. Clearly, A

and B are stable under intersection. By Proposition 3.0.1, σ(A) and σ(B) are
independent. But σ(A) = σ(F1, . . . ,Fk) and σ(B) = σ(Fk+1, . . . ,Fn). �

Corollary 3.0.3. Assume the variables (Xn)n≥1 are independent. Then for all
k ≥ 1, σ(X1, . . . , Xk) and σ(Xk+1, . . . ) are independent.

Proof. Let A := σ(X1, . . . , Xk), B :=
⋃

j≥1
σ(Xk+1, . . . , Xk+j). Clearly,

bothA andB are stable under intersection. Now by Corollary 3.0.2, σ(X1, . . . , Xk)
and σ(Xk+1, . . . , Xk+j) are independent for all j ≥ 1. Therefore, A and B are
independent. By Proposition 3.0.1, σ(A)(≡ A) and σ(B) are independent. But
σ(B) = σ(Xk+1, . . . ), which proves the lemma. �

1Remember that A1, . . . ,An are independent if for all I ⊂ {1, 2, . . . , n}, any family Ai, i ∈ I is
independent: P (

⋂
i∈I

Ai) =
∏

i∈I
P (Ai).


