
ON THE SPECIFICATION OF PROBABILITIES BY

REGULAR g-FUNCTIONS
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Abstract. We consider measures on {±1}Z for which the conditional
probability that the spin at n + 1 takes the value +1, given the values
of all spins at sites n, n − 1, . . . , is specified by some a priori given
function g. We first show how the regularity of g (continuity and uni-
form non-nullness) allows to construct explicitely measures with such
dependencies. We then consider the problem of extreme decomposi-
tion for the set of measures specified by g. Finally, we expose the
uniqueness result of Johansson and Öberg [15]: when the variation of
g is ℓ2-summable, then there exists a unique invariant measure. These
notes are in progress.
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1. Introduction

Consider the product space associated to the finite alphabet {±1}, Ω =
{±1}Z, whose elements are the sequences ω = (ωn)n∈Z. For each Λ ⊂
Z, consider the set ΩΛ = {±1}Λ, together with the canonical projec-

tion πΛ : Ω → ΩΛ defined by πΛ(ω)k := ωk ∀k ∈ Λ. Then define
C(Λ) := {π−1

Λ (A) : A ⊂ ΩΛ}, called the algebra of cylinders with base

Λ. For S ⊂ Z (possibly infinite), we consider the algebra of cylinders (with

base in S), defined by CS :=
⋃
{C(Λ) : Λ ⊂ S, finite}, and the σ-algebra

generated by the cylinders (with base in S): FS := σ(CS). When S = Z we
simply write C ≡ CZ and F ≡ FZ. We denote by M the set of probability
measures on (Ω,F).

The shift is the invertible map T : Ω → Ω defined by

(Tω)k := ωk+1 ∀k ∈ Z .

A probability measure µ ∈ M is invariant if µ◦T−1 = µ, i.e. if µ(T−1A) =
µ(A) for all A ∈ F . The set of invariant probability measures is denoted
MT .

The object of these notes is the study of measures µ for which the state
of the present, when conditionned on the past, is specified by an a priori
given function. Consider, for all k ∈ Z, the σ-algebra F(−∞,k] (the past

of k + 1), and define the cylinder [+]k := {ω : ωk = +1}. Consider the
random variable

gk(ω) := µ([+]k+1|F(−∞,k])(ω) .

Since gk is F(−∞,k]-measurable, it does not depend on the value of ωk′

when k′ > k. Our purpose here is, like in the Theory of Gibbs States in
Statistical Mechanics [6], to study measures for which the functions gk are
given a priori.

Definition 1.1. Let, g = (gk)k∈Z where for each k, gk : Ω → [0, 1] is
F(−∞,k]-measurable. A probability measure µ ∈ M is specified by g if, for
all k ∈ Z,

(1.1) µ([+]k+1|F(−∞,k])(ω) = gk(ω)

for µ-almost all ω. The set of probability measures specified by g is denoted
M(g), and MT (g) := M(g) ∩MT .

We will only be interested in the case where the transition probabilities
don’t depend on k: we assume from now on that we are given a single
F(−∞,0]-measurable function g, such that gk = g ◦T k for all k. We will use
the following abuse of notation: gk(ω) = g(T kω) = g(ωk, ωk−1, . . . ).

A function g playing the role defined above is called a g-function, and pro-
cesses with dependencies as in (1.1), i.e. the elements of M(g) (if any),
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were originally called chains with complete connections [7] or g-measures

[16]. Observe that if g depends, say, only on its first coordinate, i.e.
g = g(x1), then the process is a simple Markov Chain. We will be con-
cerned with the more interesting case where the state of the process at a
given time depends on the whole past.

Let us give examples of g-functions.

Example 1.1. A natural way of defining µ([+]k+1|F(−∞,k])(ω), i.e. deter-
mining the state of ωk+1 when conditionned on the past, is to look at a
random distance R ∈ N back in the past and, according to a certain rule
depending only on ωk, ωk−1, . . . , ωk−R+1, determine the probability that
ωk+1 = +1. This is done by defining a probability distribution for the
random distance R, Q(R = n) := pn, with

∑
n≥1 pn = 1, and, for each n,

defining some function Pn(ωk, . . . , ωk−n+1) ∈ [0, 1] which gives the proba-
bility that ωk+1 = +1 once R = n. By summing over all possibilities for
the range R, we get:

g(ωk, ωk−1, . . . ) :=
∑

n≥1

pnPn(ωk, . . . , ωk−n+1) .

A natural choice for Pn is to follow the majority, in which case {ωk+1 =
+1} is favorized if most of the spins ωk, . . . , ωk−n+1 are +1. This is natu-
rally obtained by requiring that Pn is a function of the mean 1

n

∑n−1
k=0 ωk−j:

Pn(ωk, . . . , ωk−n) := ϕ
(1

n

n−1∑

j=0

ωk−j

)
,

for some non-decreasing measurable ϕ : [−1, +1] → [0, 1], with, say,
ϕ(x) > 1

2
for x > 0 and ϕ(x) < 1

2
for x < 0. For example, Bramson

and Kalikow [5] considered the function

(1.2) ϕ(x) =

{
1 − ǫ if x ≥ 0 ,

ǫ if x < 0 .

A natural class of sequences (pn)n≥1 is, for example, of those in which pn

behaves, for large n, as

(1.3) pn ∼
1

n1+α
,

where α > 0. In this case we have

EQ(R)

{
< ∞ if 1 < α < ∞ ,

= ∞ if 0 < α ≤ 1 .

As will be seen in Section 4, EQ(R) < ∞ (with (1.2)) implies uniqueness
of the invariant measure specified by g.
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Example 1.2. Our second example is inspired by lattice systems of sta-
tistical mechanics. Let (Jn)n≥1 be a summable sequence of non-negative
real numbers. Then, define g = g(ωk, ωk−1, . . . ) by

(1.4) g :=
e−βH

e+βH + e−βH
,

where H = H(ωk, ωk−1, . . . ) := −
∑

n≥1 Jnωk−n+1, and β > 0 is the inverse
temperature. Again, a natural type of sequence (Jn)n≥1 is the one for
which

(1.5) Jn ∼
1

n1+γ
,

where γ > 0. We will see in Section 4 that γ > 1
2

implies uniqueness of
the invariant measure.

The purpose of these notes is to expose some general “well-known” facts
about processes described by g-functions of the type given above. In Sec-
tion 2 we start by giving a standard existence result, based on a compact-
ness argument. Rather than just giving existence of measures specified
by g-functions, it also allows to prepare measures with prescribed bound-
ary conditions, as in Statistical Mechanics. Then, in Section 3, we take a
closer look at the convex structure of the sets M(g) and MT (g), by show-
ing that they are completely determined by their extreme elements. In
Section 4 we expose a robust uniqueness criterium due to Johansson and
Öberg. Section 5, still under construction, will be devoted to the problem
of non-uniqueness.

Besides two results in Section 3.6 which we take from [10], the text is self
contained. The proofs of some easy lemmas have been defered to the end
of the text, in Appendix A.

2. Existence

A first problem is to find conditions on g which ensure that M(g) 6= ∅. As
in the Theory of Gibbs States, existence of specified probability measures
is standard, and guaranteed under natural assumptions, namely continuity
and non-nullness. We pursue this in the present section, which I originally
wrote in order to understand the second paragraph on p. 156 of [5].

Definition 2.1. A g-function g is continuous if vark(g) → 0 when k → ∞,
where vark(g) is the variation of g of order k, defined by

vark(g) := sup
{
|g(σ) − g(σ′)| : σl = σl , 1 ≤ l ≤ k

}
.

Therefore, if a probability measure is specified by a continuous g-function,
then the dependence of the present on the remote past is weak. We verify
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that the g-functions defined in the two examples of the previous section
are continuous. In Example 1.1, we have:

(2.1) vark(g) ≤
∑

n>k

pn ,

which goes to zero when k → ∞. In Example 1.2, a simple computation
leads to:

(2.2) vark(g) ≤
(
2β

∑

n>k

Jn

)
exp

(
2β

∑

n>k

Jn

)
.

Since (Jn)n≥1 is summable, this upper bound goes to zero when k → ∞.

Definition 2.2. A g-function g is uniformly non-null if it is uniformly
bounded away from zero and one, i.e. if there exists ǫ > 0 such that

(2.3) ǫ ≤ inf
σ

g(σ) ≤ sup
σ

g(σ) ≤ 1 − ǫ .

In other words, non-nullness means that uniformly in its past, a spin
always has a positive probability of changing sign. The g-functions of
Examples 1.1 and 1.2 are uniformly non-null. From now on, we shall
only consider g-functions which satisfy simultaneously the two properties
defined above:

Definition 2.3. A g-function g is regular [5] if it is both continuous and
uniformly non-null.

We start by showing that there always exists at least one probability
measure speficied by a regular g-function. The argument is standard and
follows from the compactness of M in the weak topology. The latter is
defined as follows: a sequence (µn)n≥1, µn ∈ M converges weakly to µ ∈ M
(denoted µn ⇒ µ) if µn(A) → µ(A) for all cylinder A ∈ C. As well known,
this convergence turns M into a sequentially compact topological space.
In the sequel, all topological considerations about M will be with respect
to this convergence. Observe that MT ⊂ M is closed, and hence compact.

Theorem 2.1. Assume g is regular. Then

(1) M(g) and MT (g) are closed, and hence compact.
(2) M(g) 6= ∅, MT (g) 6= ∅.

Before starting the proof, let us introduce a few notations and conventions.
If ω ∈ Ω, −∞ < a < b < +∞, then ωb

a := (ωb, ωb−1, . . . , ωa). Similarly,
ωb
−∞ := (ωb, ωb−1, . . . ) We will use and concatenate such words in many

ways. For example, ωb
aσ

a−1
−∞ := (ωb, . . . , ωa, σa−1, . . . ). Also, if σ ∈ {±1}N,

then ωb
aσ := (ωb, . . . , ωa, σ1, σ2, . . . ).

Analogously, [ω]ba := {ω′ : ω′
k = ωk, a ≤ k ≤ b} is called a thin cylinder.

In the degenerate case a = b, we simply write [ω]a = {ω′ : ω′
a = ωa}. We

shall use the notations [±]ba when ω is the constant configuration ωk = ±1
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∀k. Similarly, on defines [ω]b−∞ := {ω′ : ω′
k = ωk ∀k ≤ b}. To avoid heavy

notations, we will sometimes write [ω]ba[σ]a−1
c instead of [ω]ba ∩ [σ]a−1

c .

The study of M(g) will use repeatedly the following Martingale Con-
vergence Theorem: since F(−∞,k] is the smallest σ-algebra containing⋃

l≥1 F[−l,k], then for any A ∈ F ,

(2.4) µ(A|F(−∞,k]) = lim
l→∞

µ(A|F[−l,k]) µ-a.s.

We will also use the definition of conditional probability: if µ ∈ M(g),
then for all A ∈ F(−∞,k],

µ([+]k+1 ∩ A) =

∫

A

µ([+]k+1|F(−∞,k])dµ

=

∫

A

g(ωk
−∞)µ(dω) .(2.5)

One can show, for example,

Lemma 2.1. Let µ ∈ M(g), where g is uniformly non-null with constant
ǫ. Then µ([σ]ba) ≥ ǫb−a+1 > 0 for all thin cylinder [σ]ba.

Proof of Theorem 2.1. The following is largely inspired by the proof of
Dobrushin [6] for random fields on Z

d. To show that M(g) is closed,
consider a sequence (µn)n≥1, µn ∈ M(g), and assume µn ⇒ µ for some
µ ∈ M. We show that µ ∈ M(g). By (2.4), µ([+]k+1|F(−∞,k]) equals, for
µ-almost all ω,

lim
l→∞

µ([+]k+1|F[−l,k])(ω) = lim
l→∞

µ([+]k+1[ω]k−l)

µ([ω]k−l)
= lim

l→∞
lim

n→∞

µn([+]k+1[ω]k−l)

µn([ω]k−l)

We used Lemma 2.1. Using (2.5) for each µn,

µn([+]k+1[ω]k−l) =

∫

[ω]k
−l

g(ωk
−lσ

−l−1
−∞ )µn(dσ)

We rewrite this last integral as

g(ωk
−∞)µn(ωk

−l) +

∫

ωk
−l

[
g(ωk

−lσ
−l−1
−∞ ) − g(ωk

−lω
−l−1
−∞ )

]
µn(dσ)

The difference in the integral can be bounded using the variation of g,
which leads to

∣∣∣
µn([+]k+1[ω]k−l)

µn([ω]k−l)
− g(ωk

−∞)
∣∣∣ ≤ vark+l(g) ,

uniformly in n. Therefore we get

µ([+]k+1|F(−∞,k])(ω) = g(ωk
−∞) ,



SPECIFICATION BY g-FUNCTIONS 7

which proves the first statement. To show that MT (g) is closed, let µn ∈
MT (g), µn ⇒ µ. We know that µ ∈ M(g). Moreover, for any cylinder
B ∈ C,

µ(T−1B) = lim
n→∞

µn(T−1B) = lim
n→∞

µn(B) = µ(B) .

The following lemma allows to conclude that µ ∈ MT .

Lemma 2.2. Let ν ∈ M be such that ν(T−1B) = ν(B) for all cylinder
B ∈ C. Then ν ∈ MT .

For the second statement of the theorem, we start by constructing a mea-
sure νσ on ({±1}Z+ ,FZ+) (Z+ := Z ∩ [1, +∞)), associated to a boundary
condition σ ∈ {±1}Z− (Z− := Z ∩ (−∞, 0]). First, define νσ on thin
cylinders:

(2.6) νσ([ω]n1) :=
n∏

k=1

ĝ(ωk
1σ) ,

where

(2.7) ĝ(ωk
1σ) :=

{
g(ωk−1

1 σ) if ωk = +1 ,

1 − g(ωk−1
1 σ) if ωk = −1 .

By Kolmogorov’s Extension Theorem, this defines νσ uniquely. To extend
νσ to a measure on (Ω,F), write Ω = {±1}Z− × {±1}Z+ , and define
µσ ∈ M by

(2.8) µσ := δσ ⊗ νσ ,

where δσ is the Dirac mass at σ. By the compactness of M we have
existence, at least along a subsequence, of the weak limit

(2.9) µσ ◦ T−n ⇒ µσ
∗ .

To show that µσ
∗ is specified by g, we fix k ∈ Z and use again (2.4):

µσ
∗([+]k+1|F(−∞,k]) = lim

l→∞
µσ
∗ ([+]k+1|F[−l,k])

µσ
∗ -almost surely. By Lemma 2.1,

µσ
∗([+]k+1|F[−l,k])(ω) =

µσ
∗([+]k+1[ω]k−l)

µσ
∗ ([ω]k−l)

= lim
n→∞

µσ([+]k+1+n[T−nω]k+n
−l+n)

µσ([T−nω]k+n
−l+n)

= lim
n→∞

νσ([+]k+1+n[T
−nω]k+n

−l+n)

νσ([T−nω]k+n
−l+n)
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By summing over [η]−l+n−1
1 , the values of the configuration on the interval

[1,−l + n − 1] (we are assuming n ≫ l), we express the numerator as
∑

νσ([+]k+1+n[T
−nω]k+n

−l+n[η]−l+n−1
1 )

=
∑

g((T−nω)k+n
−l+nη

−l+n−1
1 σ)νσ([T−nω]k+n

−l+n[η]−l+n−1
1 ) .

The same resummation for νσ([T−nω]k+n
−l+n) and

|g((T−nω)k+n
−l+nη

−l+n−1
1 σ) − g((T−nω)k+n

1 σ)| ≤ vark+l(g)

lead to
∣∣∣
νσ([+]k+1+n[T−nω]k+n

−l+n)

νσ([T−nω]k+n
−l+n)

− g((T−nω)k+n
1 σ)

∣∣∣ ≤ vark+l(g) .

Since, again by continuity,

lim
n→∞

g((T−nω)k+n
1 σ) = g(ωk

−∞) ,

we have shown that µσ
∗ ∈ M(g). Finally, in order to show that MT (g) 6= ∅,

we use the measure µσ
∗ constructed above and define the averages

Anµ
σ
∗ :=

1

n

n−1∑

k=0

µσ
∗ ◦ T−k ,

By the following lemma and since M(g) is convex, Anµσ
∗ ∈ M(g) for all

n ≥ 1.

Lemma 2.3. If ν ∈ M(g), then ν ◦ T−1 ∈ M(g).

We can thus consider some accumulation point µσ
inv ∈ M(g) such that

(2.10) Anµ
σ
∗ ⇒ µσ

inv

at least along a subsequence. Since

µσ
inv(T

−1B) = µσ
inv(B) + lim

n→∞

µσ
∗(T

−nB) − µσ
∗(B)

n
= µσ

inv(B)

holds for all cylinder B ∈ C, Lemma 2.2 implies that µσ
inv ∈ MT . There-

fore, M(g) ∩MT 6= ∅, which finishes the proof of Theorem 2.1. �

The probability measures µσ
∗ (and µσ

inv) constructed in the preceding proof
are said to be prepared with the boundary condition σ, and an interesting
question is to understand their dependence on σ. Observe that when
there exists a unique measure specified by g (see Section 4), then all these
measures coincide: µσ

∗ = µσ′

∗ for all σ, σ′. This should be interpreted as a
loss of memory : all the information contained in the boundary condition
σ (at −∞) is lost at +∞. On the other side, when the dependence on
the boundary condition is non-trivial, i.e. when there exist two boundary
conditions σ, σ′ for which µσ

∗ 6= µσ′

∗ , we say that there is a phase transition.
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This phenomenon was exhibited for the first time, for a regular g-function,
by Bramson and Kalikow [5]. It will be the subject of Section 5.

2.1. Attractive g-functions. We constructed the probability measure
µσ
∗ , in (2.9), without knowing if it was invariant (due to the fact that the

existence of the limit is guaranteed only along a subsequence), and the
averaging procedure in (2.10) was necessary. In view of getting a control
of the shift invariance after the first limit (2.9), we introduce a natural
class of g-functions, whose additional property is similar to the one of
specifications of random fields describing ferromagnets. We remind the
usual partial order on Ω (or {±1}N): σ ≤ σ′ if and only if σk ≤ σ′

k for all
k.

Definition 2.4. A g-function g is attractive 1 if g(σ) ≤ g(σ′) whenever
σ ≤ σ′.

The g-functions defined in Examples 1.1 and 1.2 are both attractive. Sys-
tems specified by attractive g-functions have the property that the pres-
ence of pluses in the past favorizes the presence of pluses in the future. As
will now be seen, this allows to say more about the two g-measures with
conditions σ ≡ + and σ ≡ − respectively.

Proposition 2.1. Assume g is regular and attractive. Let µ+ and µ− be
defined as in (2.8). Then the sequences (µ± ◦ T−n)n≥1 have weakly limits,

(2.11) µ± ◦ T−n ⇒ µ±
∗ ,

and these are invariant: µ±
∗ ∈ MT (g).

Proof. Invariance will follow immediately from the existence of the weak
limit (2.11). We treat the case µ+. We start by showing existence, for
each thin cylinder [σ]ba, of

(2.12) µ+
∗ ([+]ba) := lim

n→∞
µ+(T−n[+]ba) .

This will allow to define µ+
∗ (B) for any B ∈ C, since the indicator of a

cylinder can always be written as a linear combination of indicators of
cylinders of the form [+]ba. The existence of (2.12) will follow by mono-
tonicity: when k is large enough,

(2.13) µ+(T−(k+1)[+]ba) ≤ µ+(T−k[+]ba) .

Let us verify (2.13) in the simple case where a = b = 0 (the general case
is proved similarly). We have µ+(T−(k+1)[+]0) = µ+([+]k+1). Then, we
condition with respect to the value taken by the spin at position k = 1:

µ+([+]k+1) = µ+([+]k+1[+]1) + µ+([+]k+1[−]1) .

1This terminology apparently originated in the monograph of Preston [17], and was
used again by Hulse in [13].
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By the definition of µ+ and the attractivity of g,

µ+([+]k+1[−]1) =

∫

[−]1

g(ωk
2 −1 +0

−∞)µ+(dω)

≤

∫

[−]1

g(ωk
2 +1 +0

−∞)µ+(dω) ≡

∫

[−]1

g(ωk
2+

1
−∞)µ+(dω) .

Since [−]1 = [+]c1, the last integral equals
∫

g(ωk
2+

1
−∞)µ+(dω) −

∫

[+]1

g(ωk
2+

1
−∞)µ+(dω)

By a change of variable, the first integral equals
∫

g(ωk
2+

1
−∞)µ+(dω) =

∫
g(ωk−1

1 +0
−∞)µ+(dω) = µ+([+]k) .

For the second, we proceed as above to recompose
∫

[+]1

g(ωk
2+

1
−∞)µ+(dω) = µ+([+]k+1[+]1) .

We have thus shown (2.13). To verify that µ+
∗ is σ-additive on C, consider

a decreasing family of cylinders such that
⋂

n≥1 Bn = ∅.

Lemma 2.4. Let {Bn}n≥1 be a decreasing (Bn+1 ⊂ Bn) family of cylinders
such that

⋂
n≥1 Bn = ∅. Then Bn = ∅ for all sufficiently large n

By Lemma 2.4, Bn = ∅ for large enough n, which implies limn→∞ µ+
∗ (Bn) =

0. The Extension Theorem of Carathéodory finishes the proof. �

The standard extension argument used above will be used again in Sections
3.4 and 3.6. More properties of the measures µ±

∗ can be found in [13].

3. Decompositions

In this section we take a closer look at the convex structure of the sets
M(g) and MT (g), where g is a regular g-function. More precisely, we
consider the decomposition of any element of these sets into a convex
(infinite dimensional) combination of extreme elements. Although such
results are usually obtained via non-constructive functional-analytic argu-
ments (Krein-Millman Theorem, see e.g. [18]), we will follow the measure-
theoretic approach developped by Dynkin [8], simplified by Georgii [12].

3.1. Heuristics. Let P ⊂ M be any nonempty set of probability mea-
sures. Since we will later be interested in the case where P is either MT ,
M(g) or MT (g), we can consider the elements of P as being the measures
of M which share a common property. In MT , the common property is
“to be invariant under T”; in M(g) it is “to be specified by g”.
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Since P is convex in the three cases under consideration, it is natural
to ask if it contains extreme elements, exP ⊂ P, and if each µ ∈ P
can be decomposed into a convex combination of these extreme elements.
Since spaces of measures are infinite-dimensional, such convex combina-
tions must involve some sort of probability measure on exP, denoted αµ.
The decomposition we expect is of the following form:

(3.1) ∀A ∈ F , µ(A) =

∫

exP

ν(A)αµ(dν) .

In a finite-dimensional setting, αµ would correspond to the coefficients of
the decomposition of µ, and αµ(exP) = 1 reflects the fact that these add
up to 1.

In concrete cases, the common property satisfied by the measures of P has
a natural sub-σ-algebra A ⊂ F associated to it, and the extreme elements
of P happen to have a simple characterization in terms of A.

Definition 3.1. Let A ⊂ F be a sub-σ-algebra. A probability ν ∈ M is
trivial on A if ν(A) ∈ {0, 1} for all A ∈ A. If P ⊂ M, define

(3.2) PA := {µ ∈ P : µ is trivial on A} .

For example, when P = MT , A is the σ-algebra of invariant events, which
appears naturally in the Ergodic Theorem, and the extreme elements of
P are the ergodic measures, which are trivial on A (see Section (3.4)).
Therefore, we assume from now on that the extreme elements of P are
characterized by their triviality on a sub-σ-algebra A, and always denote
exP by PA. Observe that a priori, it seems non-trivial that PA 6= ∅.

It happens that triviality on A is equivalent to conditionning with respect
to A, as shown in the next lemma.

Lemma 3.1. Let A ⊂ F be a sub-σ-algebra, µ ∈ M. Then µ is trivial
on A if and only if for all B ∈ F , µ(B|A) = µ(B) µ-a.s.

Therefore, the description of PA is done by studying conditional proba-
bilities of elements of P with respect to A. So, to start with, let µ ∈ P
and assume the existence of a regular conditional distribution of µ with
respect to A. That is, assume

(3.3) B 7→ Qω(B) := µ(B|A)(ω)

defines a probability measure for µ-almost all ω. At points ω at which Qω

is not a probability measure, define Qω in an arbitrary way (For example,
define Qω := µ0, where µ0 is a fixed probability measure in M.) The
identity Eµ(1B) = Eµ(Eµ(1B|A)) can then be written as follows:

(3.4) µ(B) =

∫
Qω(B)µ(dω) .
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This integral can already be interpreted as a decomposition of µ into a
convex combination of the measures Qω, ω ∈ Ω. Nevertheless, we need
to show that the relevant measures involved in the decomposition are, in
the sense of µ, concentrated on PA. A simple argument is in favor of this:
observe that when A ∈ A, then of course

(3.5) Q·(A) = 1A(·) µ-a.s. .

Ideally, we would like a reversed statement: that for µ-almost all ω,
Qω(A) ∈ {0, 1} for each A ∈ A:

(3.6) µ({ω : Qω ∈ PA}) = 1 .

We will see later that this central concentration property does indeed hold
in the cases in which we are interested. Assuming (3.6), the integral (3.4)
can be restricted to {Q· ∈ PA}:

(3.7) µ(B) =

∫

Q·∈PA

Qω(B)µ(dω) .

Then, consider the measure-valued random variable X : Ω → M, X(ω) :=
Qω. We can express µ as the expectation of X:

(3.8) µ =

∫

X∈PA

X(ω)µ(dω)

Clearly, this requires the definition of a measurable structure on M. In
elementary probability, the expectation of a real-valued random variable
X : Ω → R can be transformed into

(3.9)

∫

Ω

X(ω)µ(dω) =

∫

R

xµX(dx) ,

where µX is the distribution of X, defined for any Borel set I ⊂ R by

µX(I) := µ({ω : X(ω) ∈ I}) .

The same can done for (3.8): for each measurable set M ⊂ PA, define the
distribution

αµ(M) := µ({ω : X(ω) ∈ M}) .

Since αµ(PA) = 1 by (3.6), one can proceed as in (3.9) and push the
integration of X onto PA:

(3.10)

∫

X∈PA

X(ω)µ(dω) =

∫

PA

ναµ(dν) .

This gives the wanted decomposition of µ.

The above decomposition thus relies on the existence of the regular condi-
tional distribution Q, and on the justification of the steps that led to the
definition of the probability measure αµ. In particular, (3.6) is crucial.
Observe that this program cannot be guaranteed to succeed in general,
and requires that (Ω,F) have some particular topological structure. In
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our case, our construction of Q will rely heavily on the fact that our σ-
algebra F is generated by the cylinders, which are countable.

In Section 3.2 we define the appropriate measurable structure on sets
of probability measures. In Section 3.3 we make the previous informal
argument rigorous. In subsequent sections we apply this result to the
three situations of interest in this paper, namely where P is respectively
MT , M(g) and MT (g).

3.2. Measurable sets of Probability Measures. Consider a non-empty
subset M0 ⊂ M. A standard way of defining a measurable structure on
M0 is to consider a family of real functions on M0 and to require each of
these to be measurable.

Definition 3.2. For each A ∈ F , the evaluation map eA : M0 → [0, 1] is
defined by eA(µ) := µ(A). The evaluation σ-algebra on M0 is the smallest
σ-algebra of subsets of M0 for which each evaluation map eA, A ∈ F , is
measurable.

Remark 3.1. In other words, e(M0) is the σ-algebra generated by all the
sets of the form {ν ∈ M0 : eA(ν) ≤ c}, for A ∈ F , c ∈ [0, 1].

It will also be necessary to consider, for each bounded F -measurable f :
Ω → R, the map ef : M0 → R defined by ef (µ) := Eµ(f). By expressing f

as a uniform limit of simple functions and using Dominated Convergence,
one obtains

Lemma 3.2. If f : Ω → R is bounded and measurable, then ef : M0 → R

is e(M0)-measurable.

We denote by M+
1 (M0, e(M0)) the set of probability measures on the

measurable space (M0, e(M0)). If α ∈ M+
1 (M0, e(M0)), the integral of

an e(M0)-measurable function F : M0 → R with respect to µ is denoted
∫

M0

F (ν)α(dν) .

In particular, by choosing for each A ∈ F the evaluation map F = eA,
one can define a probability measure µ ∈ M, called the barycenter of α:

(3.11) ∀A ∈ F , µ(A) :=

∫

M0

ν(A)α(dν) .

3.3. The Abstract Decomposition. This section is without reference
to any particular structure on the underlying measurable space, besides F
being countably generated. We will nevertheless continue using the nota-
tions used so far. Our exposition follows that of Georgii [12], with slight
differences.
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Regular conditional distributions are well described by probability kernels,
of which re remind the definition.

Definition 3.3. A probability kernel from (Ω,A) to (Ω,F) is a map Q :
Ω × F → [0, 1] satisfying the following conditions:

(1) for all ω ∈ Ω, Q(ω, ·) ∈ M,
(2) for all B ∈ F , Q(·, B) is A-measurable.

In this section, the symbol Q will always denote a probability kernel from
(Ω,A) to (Ω,F). We will also write Qω(B) in place of Q(ω, B), and since
the kernel defines a map that associates to each ω ∈ Ω a probability
measure Qω on (Ω,F), we denote it by X : Ω → M, X(ω) := Qω.

Lemma 3.3. Let M be endowed with the evaluation σ-algebra e(M).
Then X : Ω → M is A-measurable: X−1(M) ∈ A for all M ∈ e(M).

Proof. Define D := {M ∈ e(M) : X−1(M) ∈ A}. It suffices (see Remark
3.1) to show that D contains all sets of the form {ν ∈ M : ν(B) ≤ c},
with B ∈ F . But X−1({ν ∈ M : ν(B) ≤ c}) = {ω : Qω(B) ≤ c} ∈ A by
the A-measurability of ω 7→ Qω(B). �

Our discussion of Section 3.1 should make the following definition natural.

Definition 3.4. Let P ⊂ M be non-empty and A ⊂ F be a sub-σ-algebra.
A probability kernel from (Ω,A) to (Ω,F) is called a superkernel for the

pair (P,A) if {Q· ∈ P} ∈ A, and if for all µ ∈ P the following conditions
hold:

(1) ∀B ∈ F , µ(B|A)(·) = Q·(B) µ-a.s.
(2) µ(Q· ∈ P) = 1.

Condition (1) means that the kernel Q is suited for the description of the
conditional distribution of each µ ∈ P with respect to A, and Condition
(2) will be necessary to justify (3.6). Now goes the main theorem.

Theorem 3.1. Assume F is countably generated. Let P ⊂ M be non-
empty, A ⊂ F a sub-σ-algebra, and let PA denote the set of elements of P
which are trivial on A, defined in (3.2). Suppose there exists a superkernel
Q for the pair (P,A). Then

(1) PA 6= ∅, and
(2) for all µ ∈ P, M ∈ e(PA), αµ(M) := µ(Q· ∈ M) is well defined,

αµ ∈ M+
1 (PA, e(PA)), and the following decomposition holds:

(3.12) ∀B ∈ F , µ(B) =

∫

PA

ν(B)αµ(dν) .

The measure αµ is the unique measure of M+
1 (PA, e(PA)) whose

barycenter is µ, i.e. for which (3.12) holds.
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The following maps will be useful in the proof. For all B ∈ F , define the
variance of Q·(B), vB : M → R, by

vB(µ) :=Eµ

[
(Q·(B) − Eµ(Q·(B)))2

]

=Eµ[Q·(B)2] − Eµ[Q·(B)]2

≡eQ·(B)2(µ) − eQ·(B)(µ)2

Since ω 7→ Qω(B) is measurable and bounded, Lemma 3.2 says that vB is
e(M)-measurable. Further,

vB(µ) =Eµ[(Q·(B) − µ(B))2] ∀µ ∈ P .(3.13)

Namely, if µ ∈ P then Eµ[Q·(B)] = Eµ[Eµ(1B|A)] = Eµ(1B) = µ(B). The
core of the proof given below is to prove the following simple characteri-
zation of PA in terms of these variances: µ ∈ PA if and only if µ ∈ P and
vB(µ) = 0 for all cylinder B ∈ C.

Proof of Theorem 3.1. Denote by C the countable generator of F . The
proof is divided in three parts.
Step 1: Study of the set PA. We characterize PA using the maps vB:

PA = {µ ∈ P : ∀B ∈ F , µ(B|A) = µ(B) µ-a.s.}

= {µ ∈ P : ∀B ∈ F , Q·(B) = µ(B) µ-a.s.}

= {µ ∈ P : ∀B ∈ C , Q·(B) = µ(B) µ-a.s.}(3.14)

= {µ ∈ P : ∀B ∈ C, vB(µ) = 0}(3.15)

≡
⋂

B∈C

{µ ∈ P : vB(µ) = 0} .(3.16)

The first equality follows from Lemma 3.1, the second from the definition
of the superkernel, and the third from the fact that {B ∈ F : Q·(B) =
µ(B) , µ − a.s.} is a Dynkin system containing C and from Theorem B.1.
In (3.15) we used (3.13). For the same reason as before, the restriction
vB : P → R is e(P)-measurable. Therefore, (3.16) shows that PA ∈ e(P).
Using again (3.16), we have

{Q· ∈ PA} =
⋂

B∈C

{Q· ∈ P, vB(Q·) = 0}

={Q· ∈ P} ∩
⋂

B∈C

X−1{µ ∈ P : vB(µ) = 0}

={Q· ∈ P} ∩
⋂

B∈C

X−1{µ ∈ M : vB(µ) = 0} .(3.17)

Since we assumed {Q· ∈ P} ∈ A this implies, using measurability of vB

and of X (Lemma 3.3) in each of the terms of the intersection over B ∈ C,
that {Q· ∈ PA} ∈ A.
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Step 2: The probability measure αµ. Let µ ∈ P. Let, for M ∈ e(PA),

(3.18) αµ(M) := µ({ω : X(ω) ∈ M}) = µ(X−1(M)) .

Let us verify that this set function is well defined, i.e. that X−1(M) ∈ A
for all M ∈ e(PA). We proceed as in the proof of Lemma 3.1. Let
D := {M ∈ e(PA) : X−1(M) ∈ A}. Since D ⊂ e(PA) and D is a σ-algebra
on PA (as can be easily verified), it suffices to see that D contains all sets
of the form {ν ∈ PA : eB(ν) ≤ c}, with B ∈ F , c ∈ [0, 1] (see Remark
3.1). But

X−1({ν ∈ PA : eB(ν) ≤ c}) = {Q· ∈ PA} ∩ {Q·(B) ≤ c} ∈ A ,

by Step 1 and since ω 7→ Qω(B) is A-measurable. This shows that αµ

is well defined. It is immediate from (3.18) that αµ is σ-additive. The
point is to verify that αµ is a probability, i.e. that X concentrates on PA

(remember (3.6)):

αµ(PA) = µ(X ∈ PA) = µ(Q· ∈ PA) = 1 .

Consider the event {Q· ∈ PA} expressed as in (3.17). Since µ(Q· ∈ P) = 1
by hypothesis, it remains to show that for all B ∈ C,

µ(X−1{µ ∈ M : vB(µ) = 0}) ≡ µ(vB(Q·) = 0) = 1 .

Since vB(Q·) ≥ 0, it is enough to show that Eµ(vB(Q·)) = 0. Remembering
that µ(Q· ∈ P) = 1 and using (3.13), we get

Eµ(vB(Q·)) =

∫

Q·∈P

vB(Qω)µ(dω)

=

∫

Q·∈P

[EQω(Q·(B)2) − Qω(B)2]µ(dω)

=

∫
[EQω(Q·(B)2) − Qω(B)2]µ(dω) .(3.19)

Now, observe that for all bounded measurable f : Ω → R,
∫

EQω(f)µ(dω) =

∫
Eµ(f |A)(ω)µ(dω) .

This follows from the definition of Q·. Namely, for f = 1E , E ∈ F ,
∫

EQω(1E)µ(dω) =

∫
Qω(E)µ(dω) ≡

∫
Eµ(1E|A)(ω)µ(dω) .

The extension to bounded functions is standard. Therefore, when f =
Q·(B)2,

∫
EQω(Q·(B)2)µ(dω) =

∫
Eµ(Q·(B)2|A)(ω)µ(dω) =

∫
Qω(B)2µ(dω) .

This shows that (3.19), i.e. Eµ(vB(Q·)), is zero.
Step 3: The decomposition and its uniqueness. Let µ ∈ P. To represent µ

as the barycenter of αµ, proceed as follows (the idea was already explained
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in the heuristic discussion of Section 3.1). First, express (3.18) using
indicator functions:∫

PA

1M(ν)αµ(dν) =

∫
1M(Qω)µ(dω) .

By a standard extension argument, this implies that for any bounded
e(PA)-measurable function F : PA → R,

∫

PA

F (ν)αµ(dν) =

∫
F (Qω)µ(dω) .

In particular, for the evaluation maps F = eB, B ∈ F , one gets
∫

PA

ν(B)αµ(dν) =

∫
Qω(B)µ(dω) .

We have thus shown (3.12). To verify that αµ is the unique measure of
M+

1 (PA, e(PA)) representing µ, observe, first, that

{Q· = µ} = {Q·(B) = µ(B) ∀B ∈ C}

This follows from the Extension Theorem of Carathéodory. So (3.14) can
also be written as:

(3.20) PA = {µ ∈ P : µ(Q· = µ) = 1} .

Assume α′
µ ∈ M+

1 (PA, e(PA)) also represents µ. Consider any M ∈ e(PA)
and write

α′
µ(M) =

∫

PA

1M(ν)α′
µ(dν) .

Since ν ∈ PA, (3.20) clearly gives ν(Q· ∈ M) = 1M(ν). Since we are also
assuming that α′

µ represents µ,
∫

PA

1M(ν)α′
µ(dν) =

∫

PA

ν(Q· ∈ M)α′
µ(dν) = µ(Q· ∈ M) ≡ αµ(M) ,

which implies αµ(M) = α′
µ(M). This proves Theorem 3.1. �

3.4. Extreme Decomposition for MT . We apply the general result of
last section to the case where P = MT , the set of measures which are
invariant under T :

MT = {µ ∈ M : µ ◦ T−1 = µ} .

The central ingredient, in the study of invariant measures, is the Ergodic
Theorem of Birkhoff, which we state for the sake of completeness:

Theorem 3.2. Let µ ∈ MT . For any f ∈ L1(Ω,F , µ), as n → ∞,

(3.21)
1

n

n−1∑

k=0

f ◦ T k → Eµ(f |I) µ-a.s.
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Here, I is the σ-algebra of invariant sets, defined by

I := {A ∈ F : TA = A} .

It is well known (see e.g. [3]) that the extreme elements of MT are the
invariant measures which are trivial on I. We therefore define

(3.22) Merg
T := {µ ∈ MT : µ is trivial on I} .

In the notations of the previous section, Merg
T = (MT )I . The elements

of Merg
T are called ergodic measures. We can now state the well-known

result saying that each invariant measure can be decomposed into a convex
combination of ergodic measures.

Theorem 3.3. Let µ ∈ MT . Then there exists a unique probability mea-
sure αµ ∈ M+

1 (Merg
T , e(Merg

T )), such that

(3.23) ∀B ∈ F , µ(B) =

∫

M
erg
T

ν(B)αµ(dν) .

Each integral in (3.23) is called the ergodic decomposition of µ(B).

This theorem is a direct application of Theorem 3.1, once we have a superk-
ernel for the pair (MT , I). As in the construction of measures specified
by a given g-function, we will rely on the compactness of Ω.

Proposition 3.1. There exists a superkernel for the pair (MT , I), de-
noted Q.

Proof. For each ω, n ≥ 1, define the empirical measure

Qω
n :=

1

n

n−1∑

k=0

δT kω ,

where δω is the Dirac mass at ω. Taking B ∈ F , one can also write

(3.24) Qω
n(B) =

1

n

n−1∑

k=0

1B ◦ T k(ω) .

Consider the set

(3.25) Ω0 :=
⋂

B∈C

{
ω ∈ Ω : lim

n→∞
Qω

n(B) exists
}

.

The following can be verified easily: for each ω ∈ Ω0, limn→∞ QT−1ω
n (B)

exists for all B ∈ C and equals

(3.26) lim
n→∞

QT−1ω
n (B) = lim

n→∞
Qω

n(B) .

In particular, Ω0 ∈ I. Let µ0 be an arbitrary probability measure in
MT (for example, a product measure). Define, for each ω ∈ Ω and each
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cylinder B ∈ C,

Qω(B) :=

{
limn→∞ Qω

n(B) if ω ∈ Ω0 ,

µ0(B) otherwise .

Lemma 3.4. For all ω, Qω can be extended uniquely to a probability
measure on (Ω,F).

Proof. When ω ∈ Ωc
0, there is nothing to show: just set Qω(B) := µ0(B)

for all B ∈ F . When ω ∈ Ω0, we see that Qω is finitely additive by
considering, for two disjoint cylinders B1, B2,

Qω(B1 ∪ B2) = lim
n→∞

Qω
n(B1 ∪ B2)

= lim
n→∞

Qω
n(B1) + lim

n→∞
Qω

n(B2) = Qω(B1) + Qω(B2) .

To verify σ-additivity, consider a decreasing family of cylinders such that⋂
n≥1 Bn = ∅. By Lemma 2.4, Bn = ∅ for large enough n, which implies

limn→∞ Qω(Bn) = 0. By the Extension Theorem of Carathéodory, there
exists a unique extension of Qω. �

Let B ∈ C, c ∈ [0, 1]. By (3.26), {ω : Qω(B) ≤ c} is invariant. This
shows that ω → Qω(B) is I-measurable. Since, as can be easily verified,
{B ∈ F : ω 7→ Qω(B) is I-measurable } is a Dynkin system containing
the cylinders, and since the cylinders are stable under intersection, this
shows that ω 7→ Qω(B) is I-measurable for all B ∈ F (Theorem B.1).
Therefore, Q is a probability kernel from (Ω, I) to (Ω,F).

We must then verify that the kernel Q provides, for each µ ∈ MT , a
regular conditional distribution with respect to I. So take µ ∈ MT , let
B ∈ C and write Q·(B) as in (3.24). By the Ergodic Theorem, as n → ∞,

Q·
n(B) → µ(B|I) , µ-a.s.

Therefore, µ(B|I) = Q·(B) µ-a.s. This also implies µ(Ω0) = 1, and
again, since {B ∈ F : µ(B|I) = Q· µ-a.s.} is a Dynkin system containing
the cylinders, we have µ(B|I) = Q·(B) µ-a.s. for all B ∈ F , which is
Condition 1 of Definition 3.4. Now

(3.27) {Q· ∈ MT} =
⋂

B∈C

{Q·(T−1B) = Q·(B)} .

This identity follows from Lemma 2.2. Since {Q·(T−1B) = Q·(B)} ∈ I
and µ(Q·(T−1B) = Q·(B)) = 1 for each B ∈ C, (3.27) implies {Q· ∈
MT} ∈ I and µ(Q· ∈ MT ) = 1, which is Condition (2) of Definition 3.4.
We have thus shown that Q is a superkernel for the pair (MT , I). �

The kernel Q constructed above will be used again in Section 3.6.
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3.5. Extreme Decomposition for M(g). In this section, we consider
the case where P is M(g),

M(g) := {µ ∈ M : µ is specified by g} ,

where g is a regular g-function. We will adapt the method exposed by
Georgii in [12] for Gibbs measures and specifications on Z

d.

The property defining elements µ ∈ M(g) involves a conditionning on
each of the pasts F(−∞,k]. Therefore, a natural candidate for the σ-algebra
which we need to study extreme elements of M(g) is the left-tail-σ-field:

T−∞ :=
⋂

k≥1

F(−∞,−k] ,

It was shown in [10] that indeed, the extreme elements of M(g) are char-
acterized by triviality on T−∞:

exM(g) = {µ ∈ M(g) : µ is trivial on T−∞} .

Theorem 3.4. Let µ ∈ M(g), where g is regular. Then there exists a
unique probability measure πµ ∈ M+

1 (exM(g), e(exM(g))), such that

(3.28) ∀B ∈ F , µ(B) =

∫

exM(g)

ν(B)πµ(dν) .

In particular, exM(g) 6= ∅.

Again, this theorem is a direct application of Theorem 3.1, once we have
a superkernel for the pair (M(g), T−∞).

Proposition 3.2. Let g be regular. Then there exists a superkernel for
the pair (M(g), T−∞), denoted Π.

In the last section, the central ingredient in the construction of the su-
perkernel for the pair (MT , I) was the Ergodic Theorem. Here, the key
convergence result will be the Backward Martingale Convergence Theo-
rem: for all A ∈ F ,

(3.29) µ(A|T−∞) = lim
n→∞

µ(A|F(−∞,−n]) µ-a.s.

Proof of Proposition 3.2: Let ω ∈ Ω, n ≥ 1, b ≥ −n. Define first, for a
cylinder [σ]b−n+1,

(3.30) γω
−n([σ]b−n+1) :=

b∏

j=−n+1

ĝ(σj
−n+1ω

n
−∞) ,

where ĝ was defined in (2.7). Then, for any thin cylinder [σ]ba, −n < a ≤ b,

(3.31) Πω
−n([σ]ba) :=

∑

[η]a−1
−n+1

γω
−n([σ]ba[η]a−1

−n+1) .
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The definition of Πω
−n extends immediately to any cylinder B ∈ C whose

base lies in [−n + 1, +∞). Then, define

Ω1 :=
⋂

B∈C

{
ω : lim

n→∞
Πω

−n(B) exists
}

.

Clearly, ω 7→ Πω
−n(B) is F(−∞,−n]-measurable for each thin cylinder, and

so {ω : limn→∞ Πω
−n(B) exists} ∈ T−∞ for each B ∈ C, which implies that

Ω1 ∈ T−∞. Let µ0 be an arbitrary probability measure in MT . To be
precise, take a product measure for which µ0([−]k) = 1− µ0([+]k) = ǫ for
all k, where ǫ is the constant that appears in the uniform non-nullness of
g. Define, for each ω ∈ Ω and each cylinder B ∈ C,

Πω(B) :=

{
limn→∞ Πω

n(B) if ω ∈ Ω1 ,

µ0(B) otherwise .

As was done in the proof of Proposition (3.1), Πω can be uniquely extended
to a probability measure on (Ω,F). To verify that ω 7→ Πω(B) is T−∞-
measurable for each B ∈ F , start by writing, for B ∈ C and c ∈ [0, 1],

{ω :Πω(B) ≤ c} =
(
{ω : Πω(B) ≤ c} ∩ Ω1

)
∪

(
{ω : Πω(B) ≤ c} ∩ Ωc

1

)

=
(
{ω : µ0(B) ≤ c} ∩ Ω1

)
∪

(
{ω : lim

n→∞
Πω

−n(B) ≤ c} ∩ Ωc
1

)
,

from which ω 7→ Πω(B) is obviously T−∞-measurable. As in the proof of
Proposition (3.1), it can be shown that this measurability extends to all
B ∈ F . Π is therefore a probability kernel from (Ω, T−∞) to (Ω,F). We
show in a few steps that Π is a superkernel for the pair (M(g), T−∞).

Claim 3.1. Let µ ∈ M(g). Then ∀A ∈ F , µ(A|T−∞) = Π·(A) µ-a.s.

Proof. Let µ ∈ M(g). Consider a thin cylinder [σ]ba. By the Backward
Martingale Convergence Theorem (3.29),

µ([σ]ba|T−∞) = lim
l→∞

µ([σ]ba|F(−∞,−l]) µ-a.s.

By summing over the possible values of the configuration on [−l+1a−1],

µ([σ]ba|F(−∞,−l]) =
∑

[η]a−1
−l+1

µ([σ]ba[η]a−1
−l+1|F(−∞,−l]) µ-a.s.

Lemma 3.5. Let µ ∈ M(g). Then for all thin cylinder [σ]b−n+1,

(3.32) µ([σ]b−n+1|F(−∞,−n]) = γ·
−n([σ]b−n+1) , µ-a.s.

Therefore, µ-a.s.,
∑

[η]a−1
−l+1

µ([σ]ba[η]a−1
−l+1|F(−∞,−l]) =

∑

[η]a−1
−l+1

γ·
−l([σ]ba[η]a−1

−l+1) ≡ Π·
−l([σ]ba) .
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This gives

(3.33) µ([σ]ba|T−∞) = lim
l→∞

Π·
−l([σ]ba) = Π·([σ]ba) µ-a.s.

This extends to all cylinder B ∈ C. It can easily be verified that D =
{A ∈ F : µ(A|T−∞) = Π·(A) µ-a.s.} is a Dynkin system. Since it contains
the cylinders, the claim is proved. �

An important consequence of (3.33) is that µ(Ω1) = 1.

Claim 3.2. For all ω ∈ Ω1, Πω ∈ M(g).

Proof. Let ω ∈ Ω1. By (2.4) we have, for Πω-almost all σ,

Πω([+]k+1|F(−∞,k])(σ) = lim
l→∞

Πω([+]k+1|F[−l,k])(σ)

= lim
l→∞

lim
n→∞

Πω
−n([+]k+1[σ]k−l)

Πω
−n([σ]k−l)

The quotient is well defined by

Lemma 3.6. For all ω, Πω([σ]ba) ≥ ǫb−a+1 > 0.

As can be verified by direct computation using the definition of Πω
−n,

(3.34)
∣∣∣
Πω

−n([+]k+1[σ]k−l)

Πω
−n([σ]k−l)

− g(σk
−n+1ω

−n
−∞)

∣∣∣ ≤ vark+l(g) ,

uniformly in n. This shows that

Πω([+]k+1|F(−∞,k]) = g(σk
−∞) ,

and therefore Πω ∈ M(g). �

Claim 3.3. {Π· ∈ M(g)} ∈ T−∞

Proof. Express {ω : Πω ∈ M(g)} as follows:
⋂

k∈Z

⋂

A∈F(−∞,k]

{
ω : Πω([+]k+1 ∩ A) =

∫

A

g(σk
−∞)Πω(dσ)

}

=
⋂

k∈Z

⋂

B∈C(−∞,k]

{
ω : Πω([+]k+1 ∩ B) =

∫

B

g(σk
−∞)Πω(dσ)

}
.

This identity follows from the fact that for all k and all ω, the collection

Dω
k :=

{
A ∈ F(−∞,k] : Πω([+]k+1 ∩ A) =

∫

A

g(σk
−∞)Πω(dσ)

}

is a Dynkin system. But it is then easy to verify that
{
ω : Πω([+]k+1 ∩ B) <

∫

B

g(σk
−∞)Πω(dσ)

}
∈ T−∞ ,

which follows from the T−∞-measurability of Π·. The other set with > in
place of < belongs to T−∞ for the same reason. �



SPECIFICATION BY g-FUNCTIONS 23

Claim 3.1 shows that Π satisfies (1) of Definition 3.4. Moreover, since
µ(Ω1) = 1 and since Ω1 ⊂ {Π· ∈ M(g)} by Claim 3.2, we have µ(Π· ∈
M(g)) = 1, which is (2) of Definition 3.4. This finishes the proof. �

3.6. Extreme Decomposition for MT (g). Finally, we consider the case
where P = MT (g), whose extreme elements we denote by exMT (g). Sur-
prisingly, we won’t need to go through the construction of a new superk-
ernel.

Theorem 3.5. Let µ ∈ MT (g), where g is regular. Consider the proba-
bility measure αµ ∈ M+

1 (Merg
T , e(Merg

T )) of Theorem 3.3. Then

(3.35) ∀B ∈ F , µ(B) =

∫

exMT (g)

ν(B)αµ(dν) .

In particular, exMT (g) 6= ∅.

The fact that the measure αµ can be used follows from the fact that the
σ-algebras I and T−∞, which appeared naturally in the constructions of
Q and Π respectively, are intimately related. This will be the content of
Lemma 3.8 below.

Proof of Theorem 3.5: Let µ ∈ MT (g). Since µ is invariant, we can use
Theorem 3.3 to decompose µ into its ergodic components:

(3.36) ∀B ∈ F , µ(B) =

∫

M
erg
T

ν(B)αµ(dν) .

We will see in Lemma 3.7 that αµ concentrates on M(g): αµ(M(g)) = 1.
Therefore,

(3.37) ∀B ∈ F , µ(B) =

∫

M
erg
T

∩M(g)

ν(B)αµ(dν) ,

But Merg
T ∩M(g) = exMT (g), as was shown in [10]. This gives (3.35). �

Lemma 3.7. Let µ ∈ MT (g), with g regular. Then αµ(M(g)) = 1.

Proof. Remember that αµ(M) = µ(Q· ∈ M) for all M ∈ e(Merg
T ), where

Q· is the superkernel of Section 3.4. We compute, for Qω-almost all σ,

Qω([+]k+1|F(−∞,k])(σ) = lim
l→∞

Qω([+]k+1[σ]k−l)

Qω([σ]k−l)

Since µ ∈ MT ,

Qω([+]k+1[σ]k−l)

Qω([σ]k−l)
=

µ([+]k+1[σ]k−l|I)(ω)

µ([σ]k−l|I)(ω)
µ-a.s.

The following can be found in [10], [12].

Lemma 3.8. Let µ ∈ MT . Then I ⊂ T−∞ µ-a.s. That is there exists,
for all A ∈ I, a set B ∈ T−∞ such that µ(A△B) = 0.
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Therefore, we can write

µ([+]k+1[σ]k−l|I) = µ
(
µ([+]k+1[σ]k−l|T−∞)

∣∣I
)

µ-a.s.

Since µ ∈ M(g), we can describe µ([+]k+1[σ]k−l|T−∞) with the superkernel
Π:

µ([+]k+1[σ]k−l|T−∞) = Π·([+]k+1[σ]k−l) µ-a.s.

= lim
n→∞

Π·
−n([+]k+1[σ]k−l) µ-a.s.(3.38)

But, as we already saw in (3.34),

Π·
−n([+]k+1[σ]k−l) =

[
g(σk

−∞) + O(vark+l(g))
]
Π·

−n([σ]k−l) .

Using the same identity as above in the other way, limn→∞ Π·
−n([σ]k−l) =

µ([σ]k−l|T−∞) µ-a.s., we get

Qω([+]k+1|F(−∞,k])(σ) = g([σ]k−∞) ,

which proves that Qω ∈ M(g). �

4. Uniqueness: the Johansson-Öberg Criterium

In this section, we consider a kind of condition that g must satisfy in order
to guarantee |MT (g)| = 1. We have seen, in Section 2, how the continuity
of g, i.e. vark(g) → 0, implies existence of measures specified by g. Since
the dependence on the past is weaker when vark(g) converges to 0 faster,
a natural problem is to understand if uniqueness of the invariant measure
can be obtained by imposing some condition on the speed at which vark(g)
goes to zero.

The uniqueness problem was considered by Doeblin and Fortet in their
pioneering paper [7] (see also [14]), via a coupling argument, under the
condition that (vark(g))k≥1 ∈ ℓ1, i.e.

(4.1)
∑

k≥1

vark(g) < ∞ .

In Example 1.1, the bound (2.1) shows that
∑

k≥1

vark(g) ≤
∑

k≥1

Q(R > k) = EQ(R) .

Therefore, [7] gives uniqueness when EQ(R) < ∞, and EQ(R) = +∞ is a
necessary ingredient for non-uniqueness.

Other significant results on uniqueness were obtained by Bowen [4], Wal-

ters [19], Berbee [1] and Hulse [13]. More recently, Johansson and Öberg
[15] gave the following criterium:
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Theorem 4.1 ([15]). Assume g is regular and (vark(g))k≥1 ∈ ℓ2, i.e.

(4.2)
∑

k≥1

vark(g)2 < ∞ .

Then there exists a unique invariant measure specified by g: |MT (g)| = 1.

Since ℓ1 ⊂ ℓ2, this result is a significant improvement of [7]. It was shown
recently by Berger, Hoffman and Sidoravicius [2] that when regarding
summability of variations, Theorem 4.1 is optimal in the following sense:
for any ǫ > 0, there exists a g-function with (vark(g))k≥1 ∈ ℓ2+ǫ which has
at least two invariant measures specified by g 2.

Consider the g-function of Example 1.2. Since
∑

n>k

Jn ∼
1

kγ
,

the upper bound (2.1) and Theorem 4.1 show that uniqueness is guaran-
teed when γ > 1

2
. This might seem surprising since the one-dimensional

Ising model with long range ferromagnetic interactions given by a sequence
(Jn)n≥1 with the asymptotic behaviour as in (1.5), exhibits a phase tran-
sition at low temperature for all values 0 < γ < 1 [9]. As a matter of fact,
it was shown recently by Fernández and Maillard [11], using [9], that if
invariance is dropped, then the Johansson-Öberg Criterium does not hold.

Theorem 4.1 is a corollary of

Proposition 4.1. Assume g is uniformly non-null and (vark(g))k≥1 ∈
ℓ2. Then any two measures µ, ν ∈ MT (g) are absolutely continuous with
respect to the other: µ ≪ ν and ν ≪ µ.

Proof of Theorem 4.1: By the decomposition Theorem 3.5 for MT (g), we
know that the extreme elements of MT (g), which are ergodic, determine
MT (g) completely. But if µ, ν are two distinct ergodic measures, then
they are singular [3]. By Proposition 4.1, this is impossible. Therefore
there can exist at most one ergodic measure specified by g, proving the
theorem. �

Proof of Proposition 4.1: Since (4.2) implies continuity of g, there exists
at least one invariant measure specified by g (Theorem 2.1). Assume
µ, ν ∈ MT (g). To show that µ ≪ ν (ν ≪ µ is obtained in the same way),
the idea is to compare these measures on cylinders with large bases, by
considering the following random variables:

Mn(ω) :=
µ([ω]n1 )

ν([ω]n1 )
.

2Observe, nevertheless, that the alphabet considered in [2] contains more than two
letters.
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The variables Mn are often called likelihood ratios; they are well defined
by Lemma 2.1. The starting point is the content of the following lemma.

Lemma 4.1. Let A ∈ F[1,m]. Then, for all n ≥ m

(4.3) µ(A) =

∫

A

Mn dν .

In particular, the sequence (Mn)n≥1 is a martingale with respect to the
filtration (F[1,n])n≥1 and to the measure ν.

Proof. Clearly, Mn is F[1,n]-measurable. If (4.3) holds, then in particular

(4.4)

∫

A

Mn dν =

∫

A

Mm dν ,

which implies that (Mn)n≥1 is a martingale with respect to (F[1,n])n≥1

and to ν. To show (4.3), we decompose A into thin cylinders [ω0]
m
1 with

ω0 ∈ {±1}[1,m], and for each ω0, we resum over all configurations ω1 in
{±1}[m+1,n]:

∫

[ω0]m1

Mn dν =
∑

ω1

∫

[ω0ω1]n1

Mn dν =
∑

ω1

µ([ω0ω1]
n
1 )

ν([ω0ω1]
n
1 )

∫

[ω0ω1]n1

dν

=
∑

ω1

µ([ω0ω1]
n
1 )

= µ([ω0]
m
1 ) ,

which yields
∫

A

Mn dν =
∑

ω0

∫

[ω0]m1

Mn dν =
∑

ω0

µ([ω0]
m
1 ) = µ(A) ,

proving (4.3). �

The identity (4.3) is interesting for the following reason: Mn is a candidate
for the construction of a density of µ with respect to ν. The strategy of
the proof is thus the following. We shall first show how the Johansson-
Öberg Condition (4.2) implies that the martingale (Mn)n≥1 is uniformly
integrable, leading to the ν-almost sure existence of the limit Mn → M∞.
This will imply, by taking n → ∞ in (4.3), that

(4.5) µ(A) =

∫

A

M∞ dν

for all cylinder A whose base lies in the half space [1, +∞). In order to
extend (4.5) to any cylinder (i.e. with base in Z), we will average translates
of M∞ by constructing

(4.6) M∞ := lim
n→∞

1

n

n−1∑

k=0

M∞ ◦ T k ,
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whose existence is guaranteed by the Ergodic Theorem. M∞ will then
be shown to be the Radon-Nikodým derivative of µ with respect to ν,
concluding the proof.

Let us show that (Mn)n≥1 is uniformly integrable with respect to ν, which
means (remember that Mn > 0)

lim
K→∞

sup
n≥1

∫

Mn≥K

Mn dν = 0 .

By taking A = {Mn ≥ K} in (4.3), we have
∫

Mn≥K

Mn dν = µ(Mn ≥ K) .

Uniform integrability with respect to ν is thus equivalent to tightness with

respect to µ:

(4.7) lim
K→∞

sup
n≥1

µ(Mn ≥ K) = 0 .

Lemma 4.2. If g satisfies the Johansson-Öberg Condition (4.2), then
(Mn)n≥1 is tight with respect to µ.

Proof. Since Mn > 0, it suffices to show that

(4.8) lim
K→∞

sup
n≥1

µ(log Mn ≥ K) = 0 .

Consider the decomposition:

µ([ω]n1) =

n∏

k=1

πk(µ) ,

where the πk(µ) = πk(µ)(ω) are defined by (use again Lemma 2.1)

πk(µ) := µ([ω]k|[ω]k−1
1 ) , k = 2, . . . , n ,

and π1(µ) := µ([ω]1). We define πk(ν) similarly.

Lemma 4.3. We have infω πk(·) ≥ ǫ > 0 and

sup
ω

|πk(µ) − πk(ν)| ≤ 2 vark(g) .

Proof. We use the fact that µ and ν are specified by g, which is assumed
to be regular. For example, in the case where ωk = +1, (2.5) gives

πk(µ) =
1

µ([ω]k−1
1 )

∫

[ω]k−1
1

g([ω]k−1
1 [σ]0−∞) µ(dσ)

= g(ωk
−∞) + O(vark(g)) .(4.9)

Doing the same with πk(ν), we obtain the result. �
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Now, write

log Mn =
n∑

k=1

log
πk(µ)

πk(ν)
=

n∑

k=1

log
(
1 +

πk(µ) − πk(ν)

πk(ν)

)

≤
n∑

k=1

πk(µ) − πk(ν)

πk(ν)
,(4.10)

since log(1 + x) ≤ x for all x > −1.

Remark 4.1. Using Lemma 4.3 in (4.10), we get

log Mn ≤
2

ǫ

n∑

k=1

vark(g) ≤
2

ǫ

∞∑

k=1

vark(g)

Therefore, if one assumes that the variation of g is in ℓ1 (the condition of
Doeblin and Fortet), one obtains immediately tightness of (log Mn)n≥1.

The key to Johansson and Öberg’s generalization is to consider the fol-
lowing identity:

n∑

k=1

πk(µ) − πk(ν)

πk(ν)
=

n∑

k=1

πk(µ) − πk(ν)

πk(µ)
+

n∑

k=1

(πk(µ) − πk(ν))2

πk(µ)πk(ν)
.

The second term is bounded using (4.2):

n∑

k=1

(πk(µ) − πk(ν))2

πk(µ)πk(ν)
≤

4

ǫ2

n∑

k=1

vark(g)2 ≤
4

ǫ2

∑

k≥1

vark(g)2 < ∞ .

The point is that in the first term, which we denote by

Zn :=
n∑

k=1

πk(µ) − πk(ν)

πk(µ)
,

the measure appearing in the denominator is µ in place of ν. This is
convenient, since we need to show tightness with respect to µ.

Lemma 4.4. (Zn)n≥1 is a martingale with respect to the filtration (F[1,n])n≥1

and to µ.

Proof. We show that

(4.11) Eµ

(
(Zk − Zk−1)|F[1,k−1]

)
= 0

for all k ≥ 1. Denote by [ωj]k−1
1 , j = 1, 2, . . . , 2k−1 the atoms generating

F[1,k−1]. On [ωj]k−1
1 , we have

Eµ

(
(Zk − Zk−1)|F[1,k−1]

)
=

1

µ([ωj]k−1
1 )

∫

[ωj ]k−1
1

πk(µ) − πk(ν)

πk(µ)
dµ
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This last integral can be computed explicitely:
∫

[ωj ]k−1
1

πk(µ) − πk(ν)

πk(µ)
dµ

=
∑

α=±

µ([α]k|[ωj]k−1
1 ) − ν([α]k|[ωj]k−1

1 )

µ([α]k|[ωj]k−1
1 )

µ([α]k[ω
j]k−1

1 )

= µ([ωj]k−1
1 )

∑

α=±

(
µ([α]k|[ω

j]k−1
1 ) − ν([α]k|[ω

j]k−1
1 )

)
= 0 .

Notice the cancellations of the terms involving µ, which occured precisely
because Zn was defined with µ in the denominator. �

Now, since log Mn ≤ Zn + C, C < ∞, tightness of (Zn)n≥1 (with respect
to µ) implies tightness of (log Mn)n≥1. To show that (Zn)n≥1 is tight, it is
sufficient to show that it is bounded in L2(Ω,F , µ), i.e. supn≥1 ‖Zn‖2 < ∞.
Indeed, for any K > 0,

µ(Zn ≥ K) =
1

K2

∫

Zn≥K

K2 dµ ≤
1

K2

∫

Zn≥K

Z2
n dµ ≤

1

K2
‖Zn‖

2
2 .

Now, setting Z0 := 0 and writing Zn =
∑n

k=1(Zk − Zk−1), we get

‖Zn‖
2
2 =

n∑

k=1

Eµ[(Zk − Zk−1)
2] + 2

∑

1≤j<k≤n

Eµ[(Zj − Zj−1)(Zk − Zk−1)] .

By the definition of Zk and Lemma 4.3,

n∑

k=1

Eµ[(Zk − Zk−1)
2] =

n∑

k=1

Eµ

[(πk(µ) − πk(ν)

πk(µ)

)2]

≤
4

ǫ2

n∑

k=1

vark(g)2 ≤
4

ǫ2

∑

k≥1

vark(g)2 < ∞ .

For each pair j < k, Zj − Zj−1 is F[1,k−1]-measurable since F[1,j−1] ⊂
F[1,j] ⊂ F[1,k−1], and so

Eµ[(Zj − Zj−1)(Zk − Zk−1)]

= Eµ

[
Eµ

(
(Zj − Zj−1)(Zk − Zk−1)|F[1,k−1]

) ]

= Eµ

[
(Zj − Zj−1)Eµ

(
(Zk − Zk−1)|F[1,k−1]

)]
= 0

by (4.11). We have thus shown that supn≥1 ‖Zn‖2 < ∞, which in turn
implies that (Mn)n≥1 is tight, and proves Lemma 4.2. �

Since (Mn)n≥1 is tight with respect to µ, it is uniformly integrable with
respect to ν, as we have seen. Therefore (see [20]), there exists an F[1,+∞)-
measurable random variable M∞ ≥ 0 such that Mn → M∞ in L1(Ω,F , ν).
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Taking the limit n → ∞ in (4.3), we get

(4.12) µ(A) =

∫

A

M∞ dν

for all cylinder whose base lies in [1, +∞), i.e. for all A ∈
⋃

n≥1 F[1,n]. To
obtain a similar representation for a generic cylinder A ∈ C, we use the
Ergodic Theorem: since ν is invariant,

1

n

n−1∑

k=0

M∞ ◦ T k −→ M∞ in L1(Ω,F , ν) ,

M∞ is a version of the conditional expectation of M∞ with respect to I.
Now for any cylinder A ∈ C, we compute

∫

A

M∞ dν = lim
n→∞

1

n

n−1∑

k=0

∫

A

M∞ ◦ T k dν .(4.13)

Assume k is large enough so that the base of T−kA lies in [1, +∞). By a
change of variable, (4.12) and the invariance of µ,

∫

A

M∞ ◦ T k dν =

∫

T−kA

M∞ dν = µ(T−kA) = µ(A)

Since this can be used for essentially all the terms in the sums appearing
in (4.13), we get

µ(A) =

∫

A

M∞ dν .

But the cylinders generate F , and so this shows that µ is absolutely con-
tinuous with respect to ν, with density M∞, which finishes the proof of
Proposition 4.1. �

5. Non-Uniqueness

The Johannson-Öberg Criterium described in Section 4 shows that when
the variation of g decreases fast enough, i.e. at least when (vark(g))k≥1 ∈
ℓ2, then there exists a unique invariant measure specified by g. It had
actually been an open problem for some time to decide whether conti-
nuity of g was enough to guarantee this uniqueness, without requiring
anything on the speed of convergence of the variation to zero. For the
first time in [5], Bramson and Kalikow showed the existence of regu-
lar g-functions for which there exist at least two invariant measures, i.e.
|MT (g)| > 1. We will describe their result in Section 5.1 below. More re-
cently, Berger, Hoffman and Sidoravicius [2] constructed another example

of non-uniqueness, showing the optimality of the Johannson-Öberg Cri-
terium. In [11], Fernández and Maillard exhibited g-functions which sat-

isfy the Johannson-Öberg Criterium, but for which there exist at least two
measures specified by g; such measures being necessarily non-invariant.
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5.1. The Bramson-Kalikow Mechanism. Consider the type of g-function
described in Example 1.1 of the Introduction:

(5.1) g(ωk
−∞) :=

∑

n≥1

pnϕ
(1

n

n−1∑

j=0

ωk−j

)
,

where ϕ is a non-decreasing and bounded away from zero and one, in order
to guarantee regularity of g. Bramson and Kalikow considered

(5.2) ϕ(x) =

{
1 − ǫ if x ≥ 0 ,

ǫ if x < 0 ,

where ǫ > 0. Functions of the type (5.1) are clearly attractive, and so we
can construct two measures µ±

∗ , prepared respectively with the boundary
condition σ ≡ + and σ ≡ −, as in (2.11).

Theorem 5.1. [5] Let ϕ be as in (5.2) with 0 < ǫ < 1
4
. There exists a

sequence (pn)n≥1 (depending on ǫ) such that µ+
∗ 6= µ−

∗ .

The mechanism leading to non-uniqueness invented by Bramson and Ka-
likow relies on the use of a sequence (pn)n≥1 with a highly lacunary struc-
ture, i.e. such that

(5.3) g(ωk
−∞) :=

∑

k≥1

pmk
ϕ
( 1

mk

mk−1∑

j=0

ωk−j

)
,

where (mk)k≥1 is a rapidly increasing sequence of integers. Let us sketch
the argument showing why non-uniqueness can be obtained under this
assumption.

Appendix A. Proofs of auxiliary results

Proof of Lemma 2.1: We proceed by induction on the size of the base. For
a thin cylinder whose base is of size one, say [σ]k with σk = +1, one has
by (2.5):

µ([σ]k) =

∫
g(ωk−1

−∞)µ(dω) ≥ ǫ .

If one assumes that µ([σ]ba) ≥ ǫb−a+1, then for the cylinder [σ]b+1
a one gets

easily, in case σb+1 = +1,

µ([σ]b+1
a ) = µ([σ]b+1 ∩ [σ]ba) =

∫

[σ]ba

µ([+]b+1|F(−∞,b])dµ

≥ ǫµ([σ]ba) ≥ ǫǫb−a+1 = ǫb+1−a+1 ,

which proves the lemma. �



32 S. FRIEDLI

Proof of Lemma 2.2: Define E = {B ∈ F : ν(T−1B) = ν(B)}. By hy-
pothesis, C ⊂ E ⊂ F . Moreover, if Bn ∈ E , Bn ր B, then

ν(T−1B) = ν
( ⋃

n≥1

T−1Bn

)
= lim

n→∞
ν(T−1Bn) = lim

n→∞
ν(Bn) = ν(B) ,

i.e. B ∈ E . The same can be done for decreasing sequences of cylinders.
By the Monotone Class Theorem, E = F . �

Proof of Lemma 2.3: For ν ◦ T−1-almost all ω,

ν ◦ T−1([+]k+1|F(−∞,k]) = lim
l→∞

ν ◦ T−1([+]k+1[ω]k−l)

ν ◦ T−1([ω]k−l)
.

Now ν ◦ T−1([+]k+1[ω]k−l) = ν([+]k+2[T
−1ω]k+1

−l+1), which equals

ν([+]k+2[T
−1ω]k+1

−l+1) =

∫

[T−1ω]k+1
−l+1

g((T−1ω)k+1
−l+1σ

−l
−∞)ν(dσ)

=
[
g((T−1ω)k+1

−∞) + O(vark+l(g))
]
ν([T−1ω]k+1

−l+1)

=
[
g(ωk

−∞) + O(vark+l(g))
]
ν ◦ T−1([ω]k−l)

�

Proof of Lemma 2.4: Let i1, i2, . . . be an enumeration of Z and define, for
all ω, ω′ ∈ Ω,

d(ω, ω′) :=
∑

n≥1

2−nd0(ωin , ω′
in

) ,

where d0(a, a′) = 0 if a = a′, 1 otherwise. This metric turns Ω into a
compact metric space. Observe that in this topology, cylinders are at the
same time open and close.
Assume Bn 6= ∅ for all n. Then

⋂
n∈N Bn 6= ∅ for all finite non-empty set

N ⊂ N. This implies that {Bn}n≥1 has the finite intersection property.
Since cylinders are closed and Ω is compact, this implies that

⋂
n≥1 Bn 6= ∅,

a contradiction. �

Proof of Lemma 3.1: Assume µ is trivial on A. Fix some B ∈ F . Then
for all A ∈ A,

∫

A

µ(B)dµ = µ(B)µ(A) = µ(B ∩ A) =

∫

A

µ(B|A)dµ = µ(B ∩ A) ,

where the second inequality follows from the triviality of µ. Conversely,
assuming that for all B ∈ F , µ(B|A) = µ(B) µ-a.s., we get, for B = A ∈
A,

µ(A) = µ(A ∩ A) =

∫

A

µ(A|A)dµ =

∫

A

µ(A)dµ = µ(A)2 ,

and therefore µ(A) = 0 or 1. �
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Proof of Lemma 3.5: W verify for example that

(A.1) µ([+]21|F(−∞,0])(ω) = g(+1ω
0
−∞)g(ω0

−∞)

for µ-almost all ω. As usual, µ-a.s.

µ([+]21|F(−∞,0])(ω) = lim
l→∞

µ([+]2[+]1[ω]0−l)

µ([ω]0−l)
.

But, since µ ∈ M(g),

µ([+]2[+]1[ω]0−l) =

∫

[+]1[ω]0
−l

g(+1ω
0
−lσ

−l−1
−∞ )µ(dσ)

=
[
g(+1[ω]0−∞) + O(varl+1(g))

]
µ([+]1[ω]0−l) .

In the same way, one gets

µ([+]1[ω]0−l) =
[
g(ω0

−∞) + O(varl(g))
]
µ([ω]0−l) .

This shows (A.1). The general case is done in the same way. �

Proof of Lemma 3.6: For simplicity, consider a cylinder [+]ba. Then since
g ≥ ǫ,

Πω
−n([+]ba) =

∑

[η]a−1
−n+1

γω
−n([+]ba[η]a−1

−n+1)

≥ ǫb−a+1
∑

[η]a−1
−n+1

γω
−n([η]a−1

−n+1) ≡ ǫb−a+1 ,

uniformly in n. �

Appendix B. Dynkin Systems

Let Ω be any non-empty set. We denote by 2Ω the family of all subsets of
Ω, including the emptyset.

Definition B.1. A collection D ⊂ 2Ω is called a Dynkin System (or simply
D-system) if the following conditions hold:

(1) Ω ∈ D.
(2) If A, B ∈ D, A ⊂ B, then B\A ∈ D.
(3) If An ∈ D for all n ≥ 1, An ր A, then A ∈ D

Observe that D-systems are stable by complementation since A ∈ D im-
plies Ac = Ω\A ∈ D. Since in general B\A = B ∩ Ac, σ-algebras are
D-systems. The only property which D-systems might not have in com-
parison to σ-algebras is stability under intersections.

Lemma B.1. A collection F ⊂ 2Ω is a σ-algebra if and only if it is a
D-system stable under intersection.
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Proof. The “only if” part is trivial. Then, assume F is a D-system stable
under intersection. Let A, B ∈ F . We have A ∪ B = (Ac ∩ Bc)c =
Ω\(Ac ∩ Bc) ∈ F . Let An ∈ F , Bn :=

⋃n

k=1 Ak. Since Bn ∈ F and
Bn ր

⋃
n≥1 Bn, we have that

⋃
n≥1 Bn ∈ F . This shows that F is a

σ-algebra. �

As can be easily verified, the intersection of an arbitrary family of D-
systems is a D-system. Therefore, given any collection C ⊂ 2Ω, one can
define the smallest D-system containing C, called the D-system generated

by C, denoted D(C). In practice, it is interesting to compare the D-system
D(C) with the σ-algebra σ(C). One clearly has D(C) ⊂ σ(C). The reverse
inclusion is obtained by imposing that C be stable under intersections, as
seen in the following lemma.

Theorem B.1. If C ⊂ 2Ω is stable under intersection, then D(C) = σ(C).

Proof. To simplify the notations, denote D(C) by D and σ(C) by F . We
already saw that D ⊂ F . To show that D ⊃ F , it suffices to verify that D
is a σ-algebra. By Lemma B.1, it suffices to verify that D is stable under
intersection.
Define D1 := {B ∈ D : B ∩ C ∈ D ∀C ∈ C}. We verify that D1 = D.
By definition, D1 ⊂ D. To verify that D1 ⊃ D, it suffices to see that D1

is a D-system containing C. Now D1 ⊃ C follows from the fact that C is
closed under intersection. This also implies that Ω ∈ D1. Let B1, B2 ∈ D1,
B1 ⊂ B2, C ∈ C. Then

(B2\B1) ∩ C = B2 ∩ C ∩ (Bc
1 ∪ Cc) = (B2 ∩ C)\(B1 ∩ C) ∈ D

Then, if Bn ∈ D1, Bn ր B, then B ∩C =
⋃

n(Bn ∩C) ∈ D, logo B ∈ D1.
This proves that D is a D-system.
Define D2 := {A ∈ D : A ∩ B ∈ D ∀B ∈ D}. We verify that D2 = D,
which will show that D is stable under intersection. By the first step, D2

contains C. As before, one can show that D2 = D. This shows that D is
stable under intersection, and finishes the proof of the theorem. �
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