A Matemática Helênica

III) O Método de Exaustão e a Área do Círculo

Sônia Pinto de Carvalho

Eudoxo propõe a seguinte definição de grandezas proporcionais (na nossa linguagem matemática de hoje) $\frac{a}{b} = \frac{c}{d}$ se, para toda fração $\frac{m}{n}$, acontece um dos seguintes casos:

- ou $\frac{m}{n} < \frac{a}{b}$ e $\frac{m}{n} < \frac{c}{d}$,
- ou $\frac{m}{n} = \frac{a}{b}$ e $\frac{m}{n} = \frac{c}{d}$,
- ou $\frac{m}{n} > \frac{a}{b}$ e $\frac{m}{n} > \frac{c}{d}$.

A idéia intuitiva que parece estar por trás desta definição é: tome um número real a. Então as frações $\frac{m}{n}$ se dividem em três grupos:

$$L_a = \{ \frac{m}{n} < a \}, I_a = \{ \frac{m}{n} = a \}, U_a = \{ \frac{m}{n} > a \}.$$

 $L_a = \{\frac{m}{n} < a\}, \ \ \widetilde{I_a} = \{\frac{m}{n} = a\}, \ \ U_a = \{\frac{m}{n} > a\}.$ Isto leva a uma idéia de definição de um número real a, a partir das frações como sendo $a = \sup L_a = \inf U_a$, que foi por onde trilhou Dedekind.

Usando a idéia intuitiva de Eudoxo e o fato de que o conjunto dos naturais não é limitado superiormente, podemos concluir dois resultados:

- 1. Dado um real a>0 existe um inteiro positivo n_0 tal que $\frac{1}{n_0}< a$. A prova deste resultado é simples, pois dado a existem três opções para uma fração $\frac{1}{n}$. Ou $\frac{1}{n}< a$ e terminou, ou $\frac{1}{n}=a$ e assim $\frac{1}{n+1}< a$ ou $\frac{1}{n}>a$. Suponhamos então que $\frac{1}{n}>a$, $\forall n$. Então $n<\frac{1}{a}$, $\forall n$ ou seja, o conjunto dos naturais é limitado, o que é absurdo. Logo, existe n_0 tal que $\frac{1}{n_0}< a$.
- 2. dados dois números reais positivos $a \in b$ existe n inteiro positivo tal que na > b. A prova deste resultado consiste em aplicar o primeiro resultado ao número $\frac{a}{h}$. Este resultado é conhecido como o Princípio de Arquimedes.

Assim, por trás da construção de Eudoxo podemos ver o Princípio de Arquimedes, que vai ser fundamental no raciocínio de Eudoxo para achar a área do círculo.

Para calcular áreas de figuras poligonais, os gregos usam a técnica da quadratura por construções com régua e compasso. Para figuras que não são polígonos, eles partem de dois princípios, onde a(S) significa a área de uma figura S:

- 1. se a figura S está contida numa figura T então $a(S) \leq a(T)$.
- 2. Se a figura R é a união, sem superposição de áreas, das figuras S e T então a(R) = a(S) + a(T).

Se S não é um polígono, eles seguem a idéia de Antifonte e Hipócrates de tomar uma sequência de polígonos P_1, P_2, P_3, \dots que enchem ou exaurem S. E, no fundo, querem tomar $\lim_{n\to\infty} a(P_n) = a(S)$. Mas gregos não tomam limites. Muito ao contrário eles têm uma certa aversão do infinito. Será preciso então "calcular" o limite com um número finito de passos. O que Eudoxo e Arquimendes pensam é: eu tenho que conseguir mostrar que $a(S-P_n)$ pode ficar menor do que qualquer erro dado, exibindo um polígono P_n onde isto funcione. É com esta perspectiva que Eudoxo inventa o "Método da Exaustão", que se encontra em Euclides X.1:

Duas grandezas desiguais sendo dadas, se da maior for tirada uma grandeza maior do que sua metade e este processo for repetido continuadamente, sobrará uma grandeza menor do que a menor grandeza dada.

Traduzindo na nossa linguagem:

Teorema: Sejam M_0 e ϵ duas grandezas, com $M_0 > \epsilon$. Tomamos $M_1 = M_0 - x$, onde $x > \frac{1}{2}M_0$, ou seja, $M_1 < \frac{1}{2}M_0$. Depois tomamos $M_2 = M_1 - y$, onde $y > \frac{1}{2}M_1$, ou seja, $M_2 < \frac{1}{2}M_1$. E assim sucessivamente de modo a termos uma sequência $M_0, M_1, M_2, ...$, onde $M_1 < \frac{1}{2}M_0, M_2 < \frac{1}{2}M_1$, etc. Então existe um N tal que $M_N < \epsilon$.

Demonstração: A prova deste resultado depende do Princípio de Arquimedes. Como $M_0 > \epsilon$, existe N inteiro positivo tal que $(N+1)\epsilon > M_0$. É claro que $N+1 \geq 2$ e segue-se que $\frac{1}{2}(N+1)\epsilon \geq \epsilon$.

Temos então que $(N+1)\epsilon = N\epsilon + \epsilon > M_0$ ou seja

$$N\epsilon > M_0 - \epsilon \ge M_0 - \frac{1}{2}(N+1)\epsilon > M_0 - \frac{1}{2}M_0 = \frac{1}{2}M_0 > M_1,$$

ou seja, $(N+1)\epsilon > M_0$ implica que $N\epsilon > M_1$.

Continuando o raciocínio, vemos que $N\epsilon > M_1$ implica que $(N-1)\epsilon = N\epsilon - \epsilon \ge M_1 - \epsilon \ge \frac{1}{2}M_1 > M_2$, e assim sucessivamente até chegarmos em $\epsilon > M_N$.

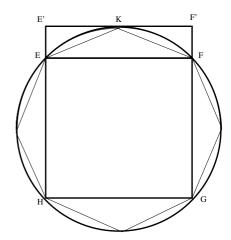
O método de exaustão é então usado para mostrar o seguinte resultado:

Dado um círculo C e um número ϵ , existe um polígono regular P, inscrito em C tal que $a(C) - a(P) < \epsilon$.

Prova: Comece com um quadrado $P_0 = EFGH$ e tome $M_0 = a(C) - a(P_0)$. Tome agora P_1 o octógno construido sobre os pontos médios e $M_1 = a(C) - a(P_1)$ e assim sucessivamente, obtendo as sequências $P_0, P_1, P_2, ..., P_n, ...$, onde P_n tem 2^{n+2} lados e $M_n = a(C) - a(P_n)$. Precisamos mostrar que $M_n - M_{n+1} > \frac{1}{2}M_n$ e logo $M_{n+1} < \frac{1}{2}M_n$, de modo que, pelo método da exaustão, existe N tal que $a(C) - a(P_N) < \epsilon$.

Ora, $M_0 - M_1 = a(C) - a(P_0) - a(C) + a(P_1) = a(P_1) - a(P_0) = 4a(\triangle EFK) = 2a(EE'FF') > 2a(\widetilde{EKF}) = \frac{1}{2}4a(\widetilde{EKF}) = \frac{1}{2}(a(C) - a(P_0)) = \frac{1}{2}M_0$, onde \widetilde{EKF} é a área entre a corda e o círculo. Logo, $M_0 - M_1 > \frac{1}{2}M_0$.

O mesmo raciocínio mostra que $M_n-M_{n+1}=a(P_{n+1})-a(P_n)>\frac{1}{2}(a(C)-a(P_n))=\frac{1}{2}M_n.$



Em Euclides XII.2 encontramos o seguinte teorema: Dados dois círculos C_1 e C_2 de raios r_1 e r_2 então

$$\frac{a(C_1)}{a(C_2)} = \frac{r_1^2}{r_2^2}. (1)$$

Prova: Para as quatro grandezas $a(C_1), a(C_2), r_1$ e r_2 temos 3 opções:

ou
$$\frac{a(C_1)}{a(C_2)} = \frac{r_1^2}{r_2^2}$$
 ou $\frac{a(C_1)}{a(C_2)} > \frac{r_1^2}{r_2^2}$ ou $\frac{a(C_1)}{a(C_2)} < \frac{r_1^2}{r_2^2}$.

Se provarmos que as duas últimas não valem, o teorema estará provado (este é um típico modo de demonstração dos gregos, chamado de dupla redução ao absurdo).

Suponhamos primeiro que

$$\frac{a(C_1)}{a(C_2)} < \frac{r_1^2}{r_2^2}$$
 ou $a(C_2) > \frac{a(C_1)r_2^2}{r_1^2} = S$

e seja $\epsilon=a(C_2)-S>0$. Pelo resultado anterior, existe um polígono regular P_2 inscrito em C_2 tal que $a(C_2)-a(P_2)<\epsilon=a(C_2)-S$, e logo, $a(P_2)>S$.

Seja P_1 um polígono regular, inscrito em C_1 e semelhante a P_2 . Não é difícil mostrar que

$$\frac{a(P_1)}{a(P_2)} = \frac{r_1^2}{r_2^2} = \frac{a(C_1)}{S}.$$

Segue-se que

$$\frac{S}{a(P_2)} = \frac{a(C_1)}{a(P_1)} > 1$$

e logo, $a(P_2) < S$, o que é um absurdo. Assim, a hipótese de que $\frac{a(C_1)}{a(C_2)} < \frac{r_1^2}{r_2^2}$ é falsa. Invertendo os papeis dos dois círculos, vemos que a outra desigualdade também é falsa, e logo

$$\frac{a(C_1)}{a(C_2)} = \frac{r_1^2}{r_2^2}$$

como desejado.

4

Os gregos não o fizeram, mas nós podemos reescrever a equação (1) como:

$$\frac{a(C_1)}{r_1^2} = \frac{a(C_2)}{r_2^2}$$

e chamar de π o valor comum da razão entre a área e o quadrado do raio de um círculo qualquer. Os gregos não podiam fazê-lo porque (1) é uma proporção entre áreas e não uma igualdade numérica.

Referência: C.H.Edwards, Jr.: The Historical Development of the Calculus, Springer Verlag, NY, 1979.