
Oval Billiards on Surfaces of Constant Curvature

Luciano Coutinho dos Santos ∗ Sônia Pinto-de-Carvalho†

Abstract

In this paper we prove that the billiard problem on surfaces of constant curvature
defines a 2-dimensional conservative and reversible dynamical system, defined by a Twist
diffeomorphism, if the boundary curve is a regular, simple, closed, strictly geodesically
convex curve and at least C2 curve.

1 Introduction

The plane billiard problem, originally defined by Birkhoff [3] in the beginning of the XX century,
consists in the free motion of a point particle in a bounded plane region, reflecting elastically
when it reachs the boundary.

In this work we extend this problem to bounded regions contained on geodesically convex
subsets of surfaces of constant curvature. We will show that this new billiard defines a 2-
dimensional conservative and reversible dynamical system, defined by a Twist diffeomorphism,
if the boundary curve is an oval, i.e., a regular, simple, closed, strictly geodesically convex curve
and at least C2 curve. This is a classical result for the Euclidean case and is proved for instance
in [13]. Nevertheless, and for the sake of completeness, we will present the proof for the three
cases.

Billiards on the Euclidean plane were, and still are, extensively studied. Billiards on surfaces
of constant curvature are much less studied and the papers focus on special properties. For in-
stance, Veselov [16] , Bolotin [5], Dragov́ıc, Jovanov́ıc and Radnov́ıc [7], Popov and Topalov [14],
[15] and Bialy [2] deal with the question of integrability. B.Gutkin, Smilansky and E.Gutkin [9]
looked at hyperbolic billiards on the sphere and the hyperbolic plane. E.Gutkin and Tabach-
nikov [10] studied geodesic polygonal billiards. Among them, only Bialy [2] looked more closely
to oval billiards, but he starts from the variational formulation of the billiard problem, taking
as granted that the geodesic distance defines a generating function, which is not our case here.

2 Surfaces of constant curvature

For the definition of the billiard, only the behaviour of the geodesics and the measure of angles
will count. So, we can take as model one of the three surfaces:

• the Euclidean plane E2, given in R3 by {z = 1} or X (ρ, θ) = (ρ cos θ, ρ sin θ, 1), ρ ≥ 0,
0 ≤ θ < 2π;
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• an open hemisphere of the unit sphere S2
+ given in R3 by

< (x, y, z), (x, y, z) >= 1, z > 0

where <,> is the usual inner product on R3 or by

X (ρ, θ) = (sin ρ cos θ, sin ρ sin θ, cos ρ), 0 < ρ < π, 0 ≤ θ < 2π;

• the upper sheet of the hyperbolic plane H2
+ given in R3 by

<< (x, y, z), (x, y, z) >>= 1, z > 0

where <<,>> is the inner product on H2 or by

X (ρ, θ) = (sinh ρ cos θ, sinh ρ sin θ, cosh ρ), ρ ≥ 0, 0 ≤ θ < 2π

which will be called by S.

The geodesics on S are the intersections of the surface with the planes passing by the origin.
S is geodesically convex. Then given a point X ∈ S and unitary vector v ∈ TXS there is a
unique minimising geodesic by X on the direction of v which is given by

γ(t) =


X + tv if S = E2

X cos t+ v sin t if S = S2
+

X cosh t+ v sinh t if S = H2
+

The distance between two points X and Y on S is so measured by

dS(X, Y ) =


√
< X − Y,X − Y > if X, Y ∈ E2

arccos(< X, Y >) if X, Y ∈ S2
+

arccosh(− << X, Y >>) if X, Y ∈ H2
+

Definition 1. A regular curve Γ(t) ⊂ S is said to be geodesically strictly convex if the inter-
section of any geodesic tangent to Γ with the curve Γ has only one point.

It is proved on [12] for the spherical case, on [6] for the hyperbolic case and for instance on [1]
for the Euclidean case that

Lemma 1. If a curve Γ ⊂ S is closed, regular, simple, Cn, n ≥ 2 and has strictly positive
geodesic curvature then Γ is geodesically strictly convex.

So, by lemma 1, any oval is geodesically strictly convex. This property, together with the fact
that S is geodesically convex will enable us to define oval billiard maps on surfaces of constant
curvature.

3 Billards on ovals

Let Ω ⊂ S be a region bounded by an oval Γ. Analogously to the plane case, we can define the
billiard on Γ as the free motion of a point particle inside Ω, reflecting elastically at the impacts
with Γ. Since the motion is free, the particle moves along a geodesic of S while it stays inside Ω
and reflects making equal angles with the tangent at the impact points with Γ. The trajectory
of the particle is a geodesic polygonal curve, with vertices at the impact points.
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As Ω is a bounded subset of a geodesically convex surface, with strictly geodesically convex
boundary, the motion is completely determined by the impact point and the direction of move-
ment immediately after each reflection. So, a parameter which locates the point of impact,
and the angle between the direction of motion and the tangent to the boundary at the impact
point, may be used to describe the system.

Let l be the length of Γ, s the arclength parameter for Γ and ψ ∈ (0, π) be angle that measures
the direction of motion at the impact point. Let C be the cylinder R/l × (0, π).

We can define the billiard map

T :
C −→ C

(s0, ψ0) 7−→ (s1, ψ1)

which associates to each impact point and direction of motion the next impact and direction.

This billiard map defines a 2-dimensional dynamical system and the orbit of any initial point
(s0, ψ0) is the set O(s0, ψ0) = {T i((s0, ψ0) = (si, ψi), i ∈ Z}.

3.1 Properties of the generating function

Let S be E2, S2
+ or H2

+ and dS be the geodesic distance on S. Let Γ ⊂ S be an oval, parame-
terized by the arclength parameter s and Ω be the region bounded by Γ.

Lemma 2. Let T (s0, ψ0) = (s1, ψ1) be the billiard map on Γ and g(s0, s1) = −dS(Γ(s0),Γ(s1)).
Then g verifies

∂g

∂s0

(s0, s1) = cosψ0 and
∂g

∂s1

(s0, s1) = − cosψ1

Proof: Let τi, i = 0 or 1, be the unitary tangent vector to the oriented geodesic joining Γ(s0)
to Γ(s1), at Γ(si).

When S = E2 we have that g2(s0, s1) =< Γ(s1)− Γ(s0),Γ(s1)− Γ(s0) > and then

∂g

∂s0

(s0, s1) = − < Γ′(s0),
Γ(s1)− Γ(s0)

g((s0), (s1))
>=< Γ′(s0), τ0 >= cosψ0. (1)

Analogously, ∂g
∂s1

(s0, s1) =< Γ′(s1), τ1 >= − cosψ1.

When S = S2
+ we have that cos g(s0, s1) =< Γ(s0),Γ(s1) > and then

∂g

∂s0

(s0, s1) = −< Γ′(s0),Γ(s1) >

sin g(s0, s1)
(2)

= −< Γ′(s0), cos g(s0, s1) Γ(s0)− sin g(s0, s1) τ0 >

sin g(s0, s1)

= < Γ′(s0), τ0 >= cosψ0.

Analogously ∂g
∂s1

(s0, s1) =< Γ′(s1),−τ1 >= − cosψ1.

When S = H2
+ we have that cosh g(s0, s1) = − � Γ(s1),Γ(s2)� and then

∂g

∂s0

(s0, s1) = −� Γ′(s0),Γ(s1)�
sinh g(s0, s1)

(3)

= −� Γ′(s0), cosh g(s0, s1) Γ(s0)− sinh g(s0, s1) τ0 �
sinh g(s0, s1)

= � Γ′(s0), τ0 �= cosψ0.
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Analogously ∂g
∂s1

(s0, s1) =� Γ′(s1),−τ1 �= − cosψ1.

Let p = − cosψ ∈ (−1, 1). Lemma 2 implies that the arclength s and the tangent momentum
p are conjugated coordinates with generating function g for the billiard map, or,

T (s0, p0) = (s1, p1)⇐⇒ ∂g

∂s0

= −p0,
∂g

∂s1

= p1

leading to the variational definition of billiards.

Lemma 3. Let ki be the geodesic curvature of Γ at si, i = 0, 1. The second derivatives of g are

∂2g

∂s2
i

(s0, s1) =


sin2 ψi

g(s0,s1)
− ki sinψi in E2

sin2 ψi

tan g(s0,s1)
− ki sinψi in S2

+
sin2 ψi

tanh g(s0,s1)
− ki sinψi in H2

+

∂2g

∂s0∂s1

(s0, s1) =


sinψ0 sinψ1

g(s0,s1)
in E2

sinψ0 sinψ1

sin g(s0,s1)
in S2

+
sinψ0 sinψ1

sinh g(s0,s1)
in H2

+

Proof: Let τi , ηi and νi be the unitary tangent, normal and binormal vectors, respectively,
to the oriented geodesic joining Γ(s0) to Γ(s1), at Γ(si), seen as a curve in R3. When S = S2

+

or H2
+, since the geodesic is contained on a plane passing by the origin, ηi = −Γ(si), νi is a

constant unitary vector, normal to the plane, and {τi, νi} is an orthonormal basis for TΓ(si)S.

In the case S = E2 we differentiate equation (1) obtaining

∂2g

∂s2
0

=
1− cos2 ψ0

g
+ < Γ”(s0),

Γ(s1)− Γ(s0)

g
>

=
sin2 ψ0

g
+ < k0 sinψ0τ0 + k0 cosψ0η0,−τ0 >=

sin2 ψ0

g
− k0 sinψ0

and

∂2g

∂s0∂s1

=
− < Γ′(s0),Γ′(s1) > + cosψ0 cosψ1

g

=
− < cosψ0τ0 − sinψ0η0, cosψ1τ1 + sinψ1η1 > + cosψ0 cosψ1

g
=

sinψ0 sinψ1

g

When S = S2
+ we differentiate (2) getting

∂2g

∂s2
0

=
− < Γ”(s0),Γ(s1) > − cos2 ψ0 cos g

sin g

=
− < −Γ(s0) + k0 Γ(s0)× Γ′(s0), cos g Γ(s0) + sin g τ0 > − cos2 ψ0 cos g

sin g

=
cos g − k0 sinψ0 sin g − cos2 ψ0 cos g

sin g
=

cos g sin2 ψ0

sin g
− k0 sinψ0

and

∂2g

∂s0∂s1

=
− < Γ′(s0),Γ′(s1) > + cosψ0 cosψ1 cos g

sin g

=
− < cosψ0τ0 − sinψ0ν0, cosψ1τ1 + sinψ1ν1 > + cosψ0 cosψ1 cos g

sin g

=
sinψ0 sinψ1

sin g
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The last case is analogous. When S = H2
+ we differentiate (3) getting

∂2g

∂s0∂s1

=
− � Γ′(s0),Γ′(s1)� + cosψ0 cosψ1 cosh g

sinh g

=
− � −Γ(s0) + k0 Γ(s0)× Γ′(s0), cosh g Γ(s0) + sinh g τ0 � − cos2 ψ0 cosh g

sinh g

=
cosh g sin2 ψ0

sinh g
− k0 sinψ0

and

∂2g

∂s0∂s1

=
− � Γ′(s0),Γ′(s1)� + cosψ0 cosψ1 cosh g

sinh g

=
− � cosψ0τ0 − sinψ0ν0, cosψ1τ1 + sinψ1ν1 � + cosψ0 cosψ1 cosh g

sinh g

=
sinψ0 sinψ1

sinh g

Finally, the calculation of ∂2g
∂s21

is analogous to ∂2g
∂s20

.

3.2 Properties of the billiard map

In this subsection we will prove that

Theorem 1. Let S be E2,S2
+ or H2

+. Let Γ ⊂ S be an oval, a closed, simple, regular Cn curve,
n ≥ 2, with strictly positive geodesic curvature. Then the billiard map T on Γ is a reversible,
conservative, Twist, Cn−1-diffeomorphism.

The proof will follow directly from the lemmas bellow. As above, s stands for the arclength
parameter for Γ, ki is the geodesic curvature of Γ at si, dS is the distance on S and g(s0, s1) =
−dS(Γ(s0),Γ(s1)).

Lemma 4. T is invertible and reversible.

Proof: Any trajectory of the billiard problem can be travelled in both senses. So, if T (si, ψi) =
(si+1, ψi+1) then T−1(si, π − ψi) = (si−1, π − ψi−1).

Let I be the involution on C given by I(s, ψ) = (s, π − ψ). Clearly I−1 = I.

We have then that T−1 = I ◦ T ◦ I or I ◦ T−1 = T ◦ I, i.e., T is reversible.

Lemma 5. T is a Cn−1 diffeomorphism.

Proof: Let T (s0, ψ0) = (s1, ψ1) and V0 and V1 be two disjoint open intervals containing s0 and
s1 respectively. We define

G : V0 × V1 × (0, π) 7→ R, G(s0, s1, ψ0) =
∂g

∂s0

(s0, s1)− cosψ0.

G is a Cn−1 function, since Γ and g are Cn. Then, by lemma 2, G(s0, s1, ψ0) = 0 and
∂G
∂s1

(s0, s1) = ∂2g
∂s0∂s1

(s0, s1) 6= 0 by lemma 3, since ψ0, ψ1 ∈ (0, π). So we can locally define

a Cn−1 function s1 = s1(s0, ψ0) such that G(s0, s1(s0, ψ0), ψ0) = 0.
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Taking now ψ1(s0, ψ0) = arccos(− ∂g
∂s1

(s0, s1(s0, ψ0))) we conclude that T (s0, ψ0) = (s1(s0, ψ0), ψ1(s0, ψ0))

is a Cn−1 function.

As T is invertible, with T−1 = I ◦ T ◦ I, we conclude that T is a Cn−1 diffeomorphism.

Differentiating the expressions

cosψ0 =
∂g

∂s0

(s0, s1(s0, ψ0))

cosψ1(s0, ψ0) = − ∂g

∂s1

(s0, s1(s0, ψ0))

we obtain

Lemma 6.

∂2g

∂s2
0

+
∂2g

∂s0∂s1

∂s1

∂s0

= 0

∂2g

∂s0∂s1

∂s1

∂ψ0

= sinψ0 (4)

∂2g

∂s0∂s1

+
∂2g

∂s2
1

∂s1

∂s0

= sinψ1
∂ψ1

∂s0

∂2g

∂s2
1

∂s1

∂ψ0

= sinψ1
∂ψ1

∂ψ0

Lemma 7. T is a Twist map.

Proof: By equation (4) together with lemma 3 and remembering that ψ ∈ (0, π) we have that
∂s1
∂ψ0
6= 0 and T has the Twist property.

Using the formulas of lemmas 6 and 3 we obtain the derivative of the billiard map as:

Lemma 8. DT (s0, ψ0) =

(
∂s1
∂s0

∂s1
∂ψ0

∂ψ1

∂s0

∂ψ1

∂ψ0

)
where

• in E2

∂s1

∂s0

=
k0g − sinψ0

sinψ1

∂s1

∂ψ0

=
g

sinψ1

∂ψ1

∂s0

=
k0 sinψ1 + k1 sinψ0 − k1k0g

sinψ1

∂ψ1

∂ψ0

=
sinψ1 − k1g

sinψ1

• in S2
+

∂s1

∂s0

=
k0 sin g − sinψ0 cos g

sinψ1

∂s1

∂ψ0

=
sin g

sinψ1

∂ψ1

∂s0

=
k0 sinψ1 cos g + sinψ0 sinψ1 sin g − k0k1 sin g + k1 sinψ0 cos g

sinψ1

∂ψ1

∂ψ0

=
sinψ1 cos g − k1 sin g

sinψ1
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• in H2
+

∂s1

∂s0

=
k0 sinh g − sinψ0 cosh g

sinψ1

∂s1

∂ψ0

=
sinh g

sinψ1

∂ψ1

∂s0

=
k0 sinψ1 cosh g + sinψ0 sinψ1 sinh g − k0k1 sinh g + k1 sinψ0 cosh g

sinψ1

∂ψ1

∂ψ0

=
sinψ1 cosh g − k1 sinh g

sinψ1

Calculating now the determinant of DT we prove that

Lemma 9. T preserves the measure dµ = sinψdsdψ.
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