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Abstract

In this paper we define and study the billiard problem on bounded regions on surfaces
of constant curvature. We show that this problem defines a 2-dimensional conservative
and reversible dynamical system, defined by a Twist diffeomorphism, if the boundary of
the region is an oval. Using these properties and defining good perturbations for billiards,
we show that having only a finite number of nondegenerate periodic orbits for each fixed
period is an open property for billiards on surfaces of constant curvature and a dense one
on the hyperbolic plane. We finish this paper studying the stability of these nondegenerate
orbits.

1 Introduction

The planar billiard problem, originally defined by Birkhoff [2] in the beginning of the XX
century, consists in the free motion of a point particle in a bounded planar region, reflecting
elastically when it reaches the boundary.

In this work we extend this problem to bounded regions on geodesically convex subsets of sur-
faces of constant curvature. We will show that this new billiard also defines a 2-dimensional
conservative and reversible dynamical system, defined by a Twist diffeomorphism, if the bound-
ary of the region is an oval, i.e., a regular, simple, closed, oriented, strictly geodesically convex
and at least C? curve. This is a classical result for the Euclidean case, proved, for instance, in
[12].

Once we have proved that we have a very special dynamical system, we address the question
of how many n-periodic orbits such a billiard can have. Bolotin [4] proved that the geodesic
circular billiard on surfaces of constant curvature is integrable and then has infinitely many
orbits of any period. A classical result for Twist maps (see, for instance, [12]), proved for planar
oval billiards in [2], applied to our billiards states that the oval billiard map T has at least two
2-periodic orbits and at least four n-periodic orbits, for each fixed n # 2. Generic C* planar
billiards have only a finite number of nondegenerate periodic orbits, for each fixed period,
as proved by Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho in [7]. In this new
context we get a less general result and show that having only a finite number of nondegenerate
periodic orbits, for each fixed period, is an open and dense property for C* oval billiards on
the Hyperbolic Plane and is only open on a hemisphere of the unit sphere. We finish this paper
studying the stability of these nondegenerate orbits using the MacKay-Meiss Criterium [15].
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Billiards on the Euclidean plane were, and still are, extensively studied. Billiards on surfaces
of constant curvature are much less studied and the papers focus on special properties. For in-
stance, Veselov [18] , Bolotin [4], Dragovic, Jovanovic and Radnovic [8], Popov and Topalov [16],
[17] and Bialy [1] deal with the question of integrability. B.Gutkin, Smilansky and E.Gutkin [10]
looked at hyperbolic billiards on the sphere and the hyperbolic plane. E.Gutkin and Tabach-
nikov [11] studied geodesic polygonal billiards. Blumen, Kim, Nance and Zarnitsky [3] studied
periodic orbits of billiards on surfaces of constant curvature, using the tools of geometric optics.
Among them, only Bialy [1] and Zhang [19] looked more closely to oval billiards.

2 Ovals on surfaces of constant curvature

For the study of billiards, we will only be interested in the behavior of the geodesics and the
measure of angles. Excluding the Euclidean plane, we can then take as model of surface of
constant curvature, denoted by S, one of the surfaces: an open hemisphere of the unit sphere
S%, given in R? by {z = /1 — 22 — y2,z > 0} or the upper sheet of the hyperbolic plane H?,

given in R>! by {z = /1 + 22 + y2}.
The geodesics on S are the intersections of the surface with the planes passing by the origin.
S is geodesically convex and the distance between two points X and Y on S is measured by

B arccos(X,Y') if XY eS%
ds(X,Y) = { arccosh(—((X,Y))) if X,Y e HZ

where (,) is the usual inner product on R? and ((,)) is the inner product on R*.
Given X,Y € S, the geodesic from X to Y is

v Xcosd+ Ttsind in Si
| Xcoshd+ rsinhd in H2

where d := dg(X,Y) and 7 is the unitary tangent vector to the geodesic at X.

Definition 1. A regular curve I'(t) C S is said to be geodesically strictly convex if the inter-
section of any geodesic tangent to I' with the curve I' has only one point.

It is proved on [14] for the spherical case and on [5] for the hyperbolic case that

Lemma 1. If a curve I' C S is closed, reqular, simple, C?,j > 2 and has strictly positive
geodesic curvature then I' 1s geodesically strictly convex.

Definition 2. An oval is a reqular, simple, closed, oriented, C7 curve, j > 2, with strictly
positive geodesic curvature .

By lemma 1, any oval is geodesically strictly convex.

3 Billiards on ovals

Let I' C S be an oval and €2 the region bounded by I'. Analogously to the planar case, we can
define the billiard on I' as the free motion of a point particle inside €2, reflecting elastically at
the impacts with I'. Since the motion is free, the particle moves along a geodesic of S while it



stays inside €2 and reflects making equal angles with the tangent at the impact with I'. The
trajectory of the particle is a geodesic polygonal line, with vertices at the impact points.

As 2 is a bounded subset of a geodesically convex surface, with strictly geodesically convex
boundary, the motion is completely determined by the impact point and the direction of move-
ment immediately after each reflection. So, a parameter which locates the point of impact,
and the angle between the direction of motion and the tangent to the boundary at the impact
point, may be used to describe the system.

Let [ be the length of I', s the arclength parameter for I' and ¢ € (0,7) be the angle that
measures the direction of motion at the impact point. Let C be the cylinder R/IZ x (0, 7).

We can define the billiard map 7t on C which associates to each impact point and direction of
motion (sg, 1) the next impact and direction (s1,%1) = Tr(so, %o)-

This billiard map defines a 2-dimensional dynamical system and the orbit of any initial point

(50,%0) is the set O(so,v0) = {T{(s0,%0) = (5i, i), 1 € Z}.

3.1 Properties of the generating function

As above, let dg be the geodesic distance on S and I' C S be an oval, parameterized by the
arclength parameter s.

Lemma 2. Let Tr(so,%o) = (s1,%1) be the billiard map on T and g(sg, s1) = —ds(I'(so),['(s1)).
Then g verifies

8_1(30751) = cos Yy and 6_sgl(80’ $1) = — cos 1y

Proof. Let 7;,i = 0 or 1, be the unitary tangent vector to the oriented geodesic joining I'(sg)
to I'(s1), at I'(s;).
When S = S2 we have that cos g(so, s1) = (I'(so), I'(s1)) and then

@(5 s1) = (I'"(s0), =T'(s1)) _ (T"(s0), sin g(so, s1) To — cos g(So, 51) T'(s0))
Dsg " sin g(so, 1) sin g(so, 51)
= (I"(s0), 10) = cos . (1)

Analogously g—sgl(so, s1) = (I"(s1), —m1) = — cos .
When S = H?2 we have that cosh g(so, s1) = —((I'(s), I'(s1))) and then

@(3 5) = ((T"(s0), —['(s1))) _ ((T"(s0), sinh g(sq, s1) To — cosh g(sg, 51) T'(s0)))
dsg sinh g(so, $1) sinh g(so, $1)
= ((I"(s0), 70)) = costhy. (2)
Analogously g—sgl(so, s1) = ((I"(s1), —11)) = — cos 1. O

Let p = —cos®y € (—1,1). Lemma 2 implies that the arclength s and the tangent momentum
p are conjugated coordinates with generating function g for the billiard map, or,

0 0
Tr (80, po) = (81,p1) <= a_g = —Po, 29
S0

leading to the variational definition of billiards.



Lemma 3. Let k; be the geodesic curvature of I' at s;,i = 0,1. The second derivatives of g are

a2
? .
0 9(80 s1) = { fan g(30,51) +kising;  in S
2 ) - _ sin®ty o ‘ ) )
6si tanh g(so,s1) + kl sin wl n H+
’ smgsingr g Q2
0 g (50 31) = s.ini’(s()ﬁ%b) m S+
’ - sin g sin Y1 . 9
050051 sminsniL gy H2

Proof. Let 7; , n; and v; be the unitary tangent, normal and binormal vectors, respectively, to
the oriented geodesic joining I'(sg) to I'(sq), at I'(s;), seen as a curve in R®. When S = S
or H2, since the geodesic is contained on a plane passing by the origin, 7; = —I'(s;), v; is
a constant unitary vector, normal to the plane, and {7;,1;} is an orthonormal basis for the
tangent plane of S at I'(s;). For simplicity of notation we write just g for g(so, s1).

In the case S =S?% we differentiate (1) getting

9?9 —(I"(s0),T(s1)) — cos® by cos g
0s3 sin g
~ —(=T(s0) + ko T'(s0) x I"(s0),cos g T'(so) — sin g 7o) — cos? thy cos g
N sin g
cos g + ko sinigsing — cos?¢ygcosg  cos gsin® )
= y = - + kg sin ¢
sin g sin g
and
0%g = (I"(50),T"(s1)) + cos by cos by cos g
Dsg0sy sin g
B —(cos g1y — singrp, cos T + sinhyvy) + cos g cos 1y cos g
B sin g
sin ¢ sin ¢y
B sin g
When S = H? we differentiate (2) getting
9 —{(I"(50),I"(s1))) + costpg cos ¥y cosh g
0sg0s; sinh g
_ —{(=T(s0) + ko I'(s0) x I'(sg), cosh g I'(sy) — sinh g 7)) — cos® ¥y cosh g
B sinh g
h gsin®
_ cos gsm Yo + ko sin gy
sinh ¢
and
9 —{{I"(s0),I"(s1))) + costpg cos Py cosh g
Dsg0s1 sinh ¢
~ —{{cos Py — singry, cos Y171 4 sinyv)) 4 cos Yy cos 1y cosh g
B sinh g
sin ¥ sin
sinh ¢
In both cases, the calculation of % is analogous to %. O]
1 0
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3.2 Properties of the billiard map
In this subsection we will prove that

Theorem 1. Let ' C S be a C7 oval, j > 2. The associated billiard map Tr is a reversible,
conservative, Twist, C7~t-diffeomorphism.

The proof will follow directly from the lemmas below. As above, s stands for the arclength
parameter for I', k; is the geodesic curvature of I" at s;, dg is the distance on S and g(sg, s1) =

—ds(P(SO), F(Sl))

Lemma 4. Tt is invertible and reversible.

Proof. Any trajectory of the billiard problem can be travelled in both senses. So, if Tr(s;, ¥;) =
(Si11,%ir1) then Trt (s, — ;) = (8521, ™ — i_1).

Let I be the involution on C given by I(s, ) = (s,m — ). Clearly [7! = 1.

We have then that TF_1 =JoTrolorlo Tr_l =Trol,i.e., Tt is reversible. ]

Lemma 5. Tt is a C7=1 diffeomorphism.

Proof. Let Tr(50,v,) = (31,1,) and V; and V; be two disjoint open intervals containing 5, and
51 respectively. We define

0
G:VoxVix(0,m) =R, G(s0,51,%0) = %(50,81) — €os Y.
0

G is a CY~! function, since I and g are C7. Then, by lemma 2, G(5o, 51,,) = 0 and 2< (50, 1) =
63802831 (50,51) # 0 by lemma 3, since 1,1, € (0,7). So we can locally define a C’J 4 function
s1= s1(S0,%o) such that G(so, s1(s0,%0),%0) = 0.

Taking now 11 (0, ¢) = arccos(— 385 (50, 51(850,%0))) we conclude that Tt (so, 1) = (51(S0,%0), ¥1(50,%0))
is a C7~! function.

As Ty is invertible, with T ' — JoTy o1, we conclude that Tr is a C9~1 diffeomorphism. [

Differentiating the expressions cos 1y = 8 (so, 51(S0,%0)) and cos 11 (sg, 1) = 888 (S0, $1(S0,%0))
we obtain
Lemma 6.
g &g Os1_ Pg 05 _ Gy
88% 880881 850 n 880881 a¢0 n 0
g g 881 Oy 9?9 0s) Oy
+ 53 = siny— T a- = sinY;——
680881 881 8 So 880 881 a¢0 awo

Lemma 7. Tt is a Twist map.

Proof. By lemmas 3 and 6 and remembering that ¢ € (0,7) and g < 0, we have that 3_{12 >0
and Tt has the Twist property.

Using the formulas of lemmas 6 and 3, we obtain the derivative of the billiard map as:

9s1 Os1
Lemma 8. DTr(so,10) = | 5% 950 | where
Bso Do
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e in Si

dsy  —kpsing —sintypcosg dsy  —sing 0Py  —siniyycosg — kysing
sy sin ¢ "0y sinay T Oy sin ¢y
0Py —kosiny cos g + sin g sin )y sin g — koky sin g — ky sintg cos g
sy sin ¢,
o in Hi

ds1  —kgsinhg —sin¢pycoshg sy sinhg 0OYy  —sineycoshg — kisinhg

8_50 a sin ¢1 ’ 81#0 a sin 1/)1 ’ 81/10 N sin 1/)1
Oy —kgsiny cosh g — sin ¢ sin ¢ sinh g — koky sinh g — ky sin g cosh g
880 B sin ¢1

Calculating now the determinant of DTt it is easy to see that

Lemma 9. Tt preserves the measure dy = sinydsdi.

4 Periodic Orbits

The oval billiard map Tt is then a conservative reversible discrete 2-dimensional dynamical
system, defined by a C/~!-Twist map, j > 2. To each n-periodic orbit of Tt is associated a
closed geodesic polygon with vertices on the oval I'. Among them we distinguish the Birkhoff
periodic orbits of type (m,n), the n-periodic orbits such that the corresponding trajectory
winds m times around I" before closing, meaning that the orbit has rotation number m/n. The
classical result for Birkhoff periodic orbits of Twist maps (see, for instance, [12], page 356)
applied to our billiards! states that:

Theorem 2. Given relatively primes m and n, n > 2 and 0 < m < n, there exist at least two
Birkhoff orbits of type (m,n) for the oval billiard map Tr.

At least two does not necessarily mean in a finite number. As was proved by Bolotin in [4],
the geodesic circular billiard on S is integrable and then has infinitely many Birkhoff orbits
of any period. On the other side, generic C'-diffeomorphisms defined on compact sets have a
finite number of nondegenerate periodic orbits of each period. This will be the case also for
oval billiards on .S, although encountering here two main differences: the domain of the billiard
map is an open cylinder and perturbations of billiards as diffeomorphisms may not be billiards.

To circumvent these problems we will perturb the boundary curve I', instead of the map itself,
and will find compact sets on the open cylinder where the periodic orbits lay, analogously to
the way it was done by Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho [7] for planar
billiards. For technical reasons that will be clear below, we will only consider C'*° boundary
ovals. Using those facts we will be able to prove that

Theorem 3. For each fized period n > 2, having only a finite number of n-periodic orbits,
all nondegenerate, is an open and dense property for C* oval billiards on Hi For C* oval
billiards on Si it 18 only an open property.

IFor oval planar billiards, this result was proven by Birkhoff in [2].



4.1 Normal perturbations of ovals

Let ' : I — S be a C° oval parameterized by the arclength parameter s and 7(s) be the
unitary normal vector such that {I”(s),n(s)} is an oriented positively and orthonormal basis
of the tangent plane of S at I'(s).

Definition 3. 3 is e-C?-close to I if 8 can be written as

D(s) + A1) . o

_ V14 A%(s) *
)= T6) £ M) e )

1— A2(s) -

where X : T — R is C7, 5 > 2 with ||A||2 < €.

Remark that if 3 is e-C?-close to I" then the trace of 3 is contained on the tubular neighbourhood
Ve(I"), given by the radial projection of the set {I'(s)+An(s), s € I, —e < A\ < €} onto S, which,
as [' is an oval, is an open subset of S for e sufficiently small.

Lemma 10. If € is sufficiently small, X is C™ and B is e-C*-close to ", then B is a C* oval.

Proof. As X is a C* function, 3 is a C'™° curve. As I' is closed, § is a closed curve.

Moreover, 5'(s) = I(s) + Ri(s, A(s), N(s)) and 8"(s) = I"(s) + Ra(s, A(s), N'(s), \"(s)) with
||R:|| = 0if [|A]]2 — 0, uniformly on s, which implies that, if € is sufficiently small, 3 is regular
and has strictly positive geodesic curvature. O

Lemma 11. If € is sufficiently small and 3 is e-C?%-close to T, then their associated generating
functions gr and gs are close in the C* topology.

Proof. Let T' be a C'™ oval on S, parameterized by the arclength parameter s and 3 be a
normal perturbation of I' as in (3), parameterized by the arclength parameter o. The generating
functions are gr(so, s1) = —ds(I'(s0),I'(s1)) and gs(so, s1) = —ds(8(a(s0)), B(o(s1))).

The result will follow immediately from the following remarks:

B(s) =T (s)+Ro(s, A(s)), 5'(s) = I"(s)+Ri(s, A(s), N(s)), 8"(s) = I"(s)+Ra(s, A(s), N'(s), \"(s))
and 0 = s + Rs(s, A\, \), with ||R;|| — 0 if || A]|]2 — 0, uniformly on s. O

Proposition 1. If € is sufficiently small and 3 is e-C?-close to T then their associated billiard
maps Tr and Ty are close in the C' topology.

Proof. By the construction of the billiard map from the generating function, as was done for
instance in the proof of lemma 5, billiard maps will be close in the C'* topology if their generating
functions are close in the C? topology. So the result follows directly from the lemma 11. O

4.2 Finite number of nondegenerate n-periodic orbits
4.2.1 Openness

Lemma 12. Let I' : I — S be an oval. There exists a positive real number 6, such that any
n-periodic orbit of Tr has at least one point on the compact strip I X [§,, ™ — 0p].



Proof. Let {(30,%¢), s (3n_1,%,_1)} be an n-periodic orbit of Tr. Then the points I'(5;) are
the vertices of a geodesic polygon P inscribed on I'. Let us suppose that this geodesic polygon
is simple and let (; be the internal angles.

In H2, by Gauss-Bonnet Theorem, Y ¢; < (n — 2)7. Then > ), > 7 and there exists iy such
that ¢, > 7. By the reversibility of T, 7 — ¢, > = and then = <, <7 — .

In S%, Gauss-Bonnet Theorem gives > (; > (n—2)m. So we have to work in a slightly different
way. Since I'(I) C S% there exists mo > n such that the area Ar enclosed by I' satisfies
Ar < 2w — J®. Suppose now that there is an n-periodic orbit {50, %), -, Bret, ¥y 1)},

associated to a simple geodesic polygon P and such that 1, < P for all i. The area Ap
enclosed by P satisfies Ap < Ar < 2m — 7. But, again by Gauss-Bonnet Theorem, Ap >

27 — %_Z(?T —G) =21 =Y, > 21 — o> Ar and_then there is at least one iy such that
e < ;. Once more, by the reversibility of Tt e S b ST — o

mo
If the geodesic polygon P is not simple, we can take a new simple polygon P with the same
vertices on I' as P and with internal angles ¢;. Taking only the internal angles ¢; of P at the
vertices on I' we have that > (; < > (; and the result follows. O

Proposition 2. For a fixed period n > 2, the set of C*-ovals on S such that its associated
billiard map has only a finite number of n-periodic orbits, all nondegenerate, is an open set.

Proof. Suppose that the C*° diffeomorphism Tt has only nondegenerate n-periodic orbits. To
each one of these orbits corresponds a fixed point of T{* on the compact strip I X [§,, 7 — d,].
So they must be in a finite number and then 7T has only a finite number of nondegenerate
n-periodic orbits. Taking e sufficiently small, any perturbation 3 e-C?-close to I' corresponds
to a billiard map Ty C'-close to Tt and will have also only a finite number of nondegenerate
n-periodic orbits. O

4.2.2 Density

Suppose { (3o, EO), (51, El), ey (801, En_l)} a degenerate n-periodic orbit for Tr. As det(DT{‘kEm%)) =
1, being degenerate translates as tr(DT$|(§0@O)) =42,
By lemma 8

T(go 7@0) - DT(gn* 1 7@77,7 1 )

= ! —A,1.... A1 4

sin ... sin,,_,

DT,

(Sn—2,0p_o)"""

DTi5y3,)

Each matrix A; = k;1k;B; + ki 1C; + k;D; + E;, where k; is the geodesic curvature of I' at s;,
and the entries of the matrices B;, C;, D;, E; depend only on the angles ¢; and v, ; and on the
geodesic distance between I'(s;) and I'(s;1;).

Let us fix our attention on one impact point of the degenerate n-periodic trajectory, say I'(sy).
If it impacts m; times at I'(s1) then

tl"(DT(ZO@O)) = pl(kl) = bmlkﬂlnl + ...+ blk'l +c = +2

where the coefficients b; and ¢; do not depend on £;.

If any of the b; # 0, we can take a sufficiently small normal perturbation (3, as in (3), with a
function A satisfying A(s1) = 0, X'(s1) = 0, \"(s1) # 0, and A = 0 outside an interval containing
s1 and no other point of the trajectory. So we preserve the periodic orbit but change the
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geodesic curvature at the vertex I'(s;), which implies tr(DT) # tr(DT}), i.e, on § the orbit is
nondegenerate.

If all the b; = 0 we take the next impact s, (as a billiard has no fixed point, sy # s1) and then:

tr(DT

(Eo,%)) = pa(ke) = by, ks + ... + bk + o = ¢; = £2

where the coefficients b; and ¢, do not depend on k; and ks.

If any of the b; # 0 we can take the small perturbation 3 at s, as above. Otherwise, we continue
the process till the last impact, say so. We have then

tr(DT&O’%)) = po(ko) = bmoksno + ...+ blkO + ¢y = +2

where the coefficients b; and ¢y do not depend any more on any of the geodesic curvatures k;.

For H? we have calculated ¢ obtaining ¢y = (—1)"2cosh L # £2 where L # 0 is the perimeter
of the geodesic polygonal trajectory.

Then, in this case, there is a j such that b; # 0 and we can approach Tt by billiards with a
nondegenerate n-periodic orbit.

As nondegenerate periodic orbits are isolated, with a finite number of perturbations we can
construct an oval 3 as close as we want to I' such that the associated billiard map has only a
finite number of nondegenerate n-periodic orbits.

We have then

Proposition 3. For a fized period n > 2, the set of C*°-ovals on H3 such that its associated
billiard map has only a finite number of n-periodic orbits, all nondegenerate, is a dense set.

Unfortunately, the same techniques do not work at S2. If all the b; are zero except for the last
impact sg we get tr(DTgO’%)) = po(ko) = bmoky™ + ... + biko + co = £2 where, taking L as the
perimeter of the trajectory, ¢y = (—1)" 2 cos L and all the coefficients b; are multiples of sin L.
So, if L = pm, ¢y = £2 and all the b; = 0 and our normal perturbation do not destroy the
degenerescence of the orbit.

Summarizing we have

Theorem 4. For each fized period n > 2, having only a finite number of n-periodic orbits,
all nondegenerate, is an open and dense property for C*™ oval billiards on H2. For C* oval
billiards on Si it 1is only an open property.

4.2.3 A remark about the planar case

Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho [7] proved that having only a finite
number of n-periodic orbits, all nondegenerate, is a generic property for C? planar oval billiards.
Although their result is true, they did not analyze the trajectories with multiple impact points.
Using our techniques we can fill in this gap remarking that if all the b; are zero we get in the
final step

tr(DTgO@O)) = po(ko) = bmoky® + ... + biko + (—1)"2L = £2

where L the perimeter of the trajectory.

If L #1, cy # £2 and then there is a b; # 0 and the special normal perturbation on the plane
destroys the degenerescence.

If L = 1, the first coefficient b; = (—1)""12(==— + ... + —1—) # 0 and, again, the special

sin 1 sin E’"O

normal perturbation solves the problem.



4.3 Stability of periodic orbits

Let O(so,v0) = {(50,%0), ($1,%1), -, (Sn—1,%¥n_1)} be an n-periodic orbit for Tr.

As det(DT{|(so,00)) = 1, O(50, 1) is hyperbolic if \tT(DTﬂ(so,wo))’ > 2, elliptic if [tr( DT (55,0))| <
2 and parabolic if [tr(DT7(su0))| = 2.

Let W (sg, 81,y Sn_1) = Z?;Ol g(si, Siv1), where g(sg, s1) = —ds(I(sp),I'(s1)) is the generating
function and s, = sg, be the action defined on the n-torus R/IZ x ... x R/IZ minus the set
{(s0, 51, .., Sp—1) 8.t Fi # jwith s; = s,}.

The critical points of W are the coordinates of the vertices on I' of the n-periodic trajectories,
since g—;’i(si,l,si) = —g—gi(si,siﬂ). Remark that W < 0 and it will always have a global
minimum (perhaps degenerate), but not a global maximum.

The MacKay-Meiss formula [15] relates the derivative of 77" with the Hessian matrix H of W
by
det H
2 —tr DTV (s = (=) —
r T ‘( O»wO) ( ) bobl...bnfl
2
where bl = #{iﬂ(si, Si+1).
It implies that the nondegenerate critical points of the action W are the nondegenerate n-

periodic orbits of Tt.

So, if Tt has only nondegenerate n-periodic orbits, the nondegenerate minima of W will always
be hyperbolic. The other n-periodic orbits can be either hyperbolic or elliptic.
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