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Abstract

In this paper we define and study the billiard problem on bounded regions on surfaces
of constant curvature. We show that this problem defines a 2-dimensional conservative
and reversible dynamical system, defined by a Twist diffeomorphism, if the boundary of
the region is an oval. Using these properties and defining good perturbations for billiards,
we show that having only a finite number of nondegenerate periodic orbits for each fixed
period is an open property for billiards on surfaces of constant curvature and a dense one
on the hyperbolic plane. We finish this paper studying the stability of these nondegenerate
orbits.

1 Introduction

The planar billiard problem, originally defined by Birkhoff [2] in the beginning of the XX
century, consists in the free motion of a point particle in a bounded planar region, reflecting
elastically when it reaches the boundary.

In this work we extend this problem to bounded regions on geodesically convex subsets of sur-
faces of constant curvature. We will show that this new billiard also defines a 2-dimensional
conservative and reversible dynamical system, defined by a Twist diffeomorphism, if the bound-
ary of the region is an oval, i.e., a regular, simple, closed, oriented, strictly geodesically convex
and at least C2 curve. This is a classical result for the Euclidean case, proved, for instance, in
[12].

Once we have proved that we have a very special dynamical system, we address the question
of how many n-periodic orbits such a billiard can have. Bolotin [4] proved that the geodesic
circular billiard on surfaces of constant curvature is integrable and then has infinitely many
orbits of any period. A classical result for Twist maps (see, for instance, [12]), proved for planar
oval billiards in [2], applied to our billiards states that the oval billiard map T has at least two
2-periodic orbits and at least four n-periodic orbits, for each fixed n 6= 2. Generic C1 planar
billiards have only a finite number of nondegenerate periodic orbits, for each fixed period,
as proved by Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho in [7]. In this new
context we get a less general result and show that having only a finite number of nondegenerate
periodic orbits, for each fixed period, is an open and dense property for C∞ oval billiards on
the Hyperbolic Plane and is only open on a hemisphere of the unit sphere. We finish this paper
studying the stability of these nondegenerate orbits using the MacKay-Meiss Criterium [15].
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Billiards on the Euclidean plane were, and still are, extensively studied. Billiards on surfaces
of constant curvature are much less studied and the papers focus on special properties. For in-
stance, Veselov [18] , Bolotin [4], Dragov́ıc, Jovanov́ıc and Radnov́ıc [8], Popov and Topalov [16],
[17] and Bialy [1] deal with the question of integrability. B.Gutkin, Smilansky and E.Gutkin [10]
looked at hyperbolic billiards on the sphere and the hyperbolic plane. E.Gutkin and Tabach-
nikov [11] studied geodesic polygonal billiards. Blumen, Kim, Nance and Zarnitsky [3] studied
periodic orbits of billiards on surfaces of constant curvature, using the tools of geometric optics.
Among them, only Bialy [1] and Zhang [19] looked more closely to oval billiards.

2 Ovals on surfaces of constant curvature

For the study of billiards, we will only be interested in the behavior of the geodesics and the
measure of angles. Excluding the Euclidean plane, we can then take as model of surface of
constant curvature, denoted by S, one of the surfaces: an open hemisphere of the unit sphere
S2

+, given in R3 by {z =
√

1− x2 − y2, z > 0} or the upper sheet of the hyperbolic plane H2
+,

given in R2,1 by {z =
√

1 + x2 + y2}.
The geodesics on S are the intersections of the surface with the planes passing by the origin.
S is geodesically convex and the distance between two points X and Y on S is measured by

dS(X, Y ) =

{
arccos〈X, Y 〉 if X, Y ∈ S2

+

arccosh(−〈〈X, Y 〉〉) if X, Y ∈ H2
+

where 〈, 〉 is the usual inner product on R3 and 〈〈, 〉〉 is the inner product on R2,1.

Given X, Y ∈ S, the geodesic from X to Y is

Y =

{
X cos d+ τ sin d in S2

+

X cosh d+ τ sinh d in H2
+

where d := dS(X, Y ) and τ is the unitary tangent vector to the geodesic at X.

Definition 1. A regular curve Γ(t) ⊂ S is said to be geodesically strictly convex if the inter-
section of any geodesic tangent to Γ with the curve Γ has only one point.

It is proved on [14] for the spherical case and on [5] for the hyperbolic case that

Lemma 1. If a curve Γ ⊂ S is closed, regular, simple, Cj, j ≥ 2 and has strictly positive
geodesic curvature then Γ is geodesically strictly convex.

Definition 2. An oval is a regular, simple, closed, oriented, Cj curve, j ≥ 2, with strictly
positive geodesic curvature .

By lemma 1, any oval is geodesically strictly convex.

3 Billiards on ovals

Let Γ ⊂ S be an oval and Ω the region bounded by Γ. Analogously to the planar case, we can
define the billiard on Γ as the free motion of a point particle inside Ω, reflecting elastically at
the impacts with Γ. Since the motion is free, the particle moves along a geodesic of S while it
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stays inside Ω and reflects making equal angles with the tangent at the impact with Γ. The
trajectory of the particle is a geodesic polygonal line, with vertices at the impact points.

As Ω is a bounded subset of a geodesically convex surface, with strictly geodesically convex
boundary, the motion is completely determined by the impact point and the direction of move-
ment immediately after each reflection. So, a parameter which locates the point of impact,
and the angle between the direction of motion and the tangent to the boundary at the impact
point, may be used to describe the system.

Let l be the length of Γ, s the arclength parameter for Γ and ψ ∈ (0, π) be the angle that
measures the direction of motion at the impact point. Let C be the cylinder R/lZ× (0, π).

We can define the billiard map TΓ on C which associates to each impact point and direction of
motion (s0, ψ0) the next impact and direction (s1, ψ1) = TΓ(s0, ψ0).

This billiard map defines a 2-dimensional dynamical system and the orbit of any initial point
(s0, ψ0) is the set O(s0, ψ0) = {T iΓ(s0, ψ0) = (si, ψi), i ∈ Z}.

3.1 Properties of the generating function

As above, let dS be the geodesic distance on S and Γ ⊂ S be an oval, parameterized by the
arclength parameter s.

Lemma 2. Let TΓ(s0, ψ0) = (s1, ψ1) be the billiard map on Γ and g(s0, s1) = −dS(Γ(s0),Γ(s1)).
Then g verifies

∂g

∂s0

(s0, s1) = cosψ0 and
∂g

∂s1

(s0, s1) = − cosψ1

Proof. Let τi, i = 0 or 1, be the unitary tangent vector to the oriented geodesic joining Γ(s0)
to Γ(s1), at Γ(si).

When S = S2
+ we have that cos g(s0, s1) = 〈Γ(s0),Γ(s1)〉 and then

∂g

∂s0

(s0, s1) =
〈Γ′(s0),−Γ(s1)〉

sin g(s0, s1)
=
〈Γ′(s0), sin g(s0, s1) τ0 − cos g(s0, s1) Γ(s0)〉

sin g(s0, s1)

= 〈Γ′(s0), τ0〉 = cosψ0. (1)

Analogously ∂g
∂s1

(s0, s1) = 〈Γ′(s1),−τ1〉 = − cosψ1.

When S = H2
+ we have that cosh g(s0, s1) = −〈〈Γ(s0),Γ(s1)〉〉 and then

∂g

∂s0

(s0, s1) =
〈〈Γ′(s0),−Γ(s1)〉〉

sinh g(s0, s1)
=
〈〈Γ′(s0), sinh g(s0, s1) τ0 − cosh g(s0, s1) Γ(s0)〉〉

sinh g(s0, s1)

= 〈〈Γ′(s0), τ0〉〉 = cosψ0. (2)

Analogously ∂g
∂s1

(s0, s1) = 〈〈Γ′(s1),−τ1〉〉 = − cosψ1.

Let p = − cosψ ∈ (−1, 1). Lemma 2 implies that the arclength s and the tangent momentum
p are conjugated coordinates with generating function g for the billiard map, or,

TΓ(s0, p0) = (s1, p1)⇐⇒ ∂g

∂s0

= −p0,
∂g

∂s1

= p1

leading to the variational definition of billiards.
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Lemma 3. Let ki be the geodesic curvature of Γ at si, i = 0, 1. The second derivatives of g are

∂2g

∂s2
i

(s0, s1) =

{
sin2 ψi

tan g(s0,s1)
+ ki sinψi in S2

+
sin2 ψi

tanh g(s0,s1)
+ ki sinψi in H2

+

∂2g

∂s0∂s1

(s0, s1) =

{
sinψ0 sinψ1

sin g(s0,s1)
in S2

+
sinψ0 sinψ1

sinh g(s0,s1)
in H2

+

Proof. Let τi , ηi and νi be the unitary tangent, normal and binormal vectors, respectively, to
the oriented geodesic joining Γ(s0) to Γ(s1), at Γ(si), seen as a curve in R3. When S = S2

+

or H2
+, since the geodesic is contained on a plane passing by the origin, ηi = −Γ(si), νi is

a constant unitary vector, normal to the plane, and {τi, νi} is an orthonormal basis for the
tangent plane of S at Γ(si). For simplicity of notation we write just g for g(s0, s1).

In the case S = S2
+ we differentiate (1) getting

∂2g

∂s2
0

=
−〈Γ′′(s0),Γ(s1)〉 − cos2 ψ0 cos g

sin g

=
−〈−Γ(s0) + k0 Γ(s0)× Γ′(s0), cos g Γ(s0)− sin g τ0〉 − cos2 ψ0 cos g

sin g

=
cos g + k0 sinψ0 sin g − cos2 ψ0 cos g

sin g
=

cos g sin2 ψ0

sin g
+ k0 sinψ0

and

∂2g

∂s0∂s1

=
−〈Γ′(s0),Γ′(s1)〉+ cosψ0 cosψ1 cos g

sin g

=
−〈cosψ0τ0 − sinψ0ν0, cosψ1τ1 + sinψ1ν1〉+ cosψ0 cosψ1 cos g

sin g

=
sinψ0 sinψ1

sin g

When S = H2
+ we differentiate (2) getting

∂2g

∂s0∂s1

=
−〈〈Γ′(s0),Γ′(s1)〉〉+ cosψ0 cosψ1 cosh g

sinh g

=
−〈〈−Γ(s0) + k0 Γ(s0)× Γ′(s0), cosh g Γ(s0)− sinh g τ0〉〉 − cos2 ψ0 cosh g

sinh g

=
cosh g sin2 ψ0

sinh g
+ k0 sinψ0

and

∂2g

∂s0∂s1

=
−〈〈Γ′(s0),Γ′(s1)〉〉+ cosψ0 cosψ1 cosh g

sinh g

=
−〈〈cosψ0τ0 − sinψ0ν0, cosψ1τ1 + sinψ1ν1〉〉+ cosψ0 cosψ1 cosh g

sinh g

=
sinψ0 sinψ1

sinh g

In both cases, the calculation of ∂2g
∂s21

is analogous to ∂2g
∂s20

.
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3.2 Properties of the billiard map

In this subsection we will prove that

Theorem 1. Let Γ ⊂ S be a Cj oval, j ≥ 2. The associated billiard map TΓ is a reversible,
conservative, Twist, Cj−1-diffeomorphism.

The proof will follow directly from the lemmas below. As above, s stands for the arclength
parameter for Γ, ki is the geodesic curvature of Γ at si, dS is the distance on S and g(s0, s1) =
−dS(Γ(s0),Γ(s1)).

Lemma 4. TΓ is invertible and reversible.

Proof. Any trajectory of the billiard problem can be travelled in both senses. So, if TΓ(si, ψi) =
(si+1, ψi+1) then T−1

Γ (si, π − ψi) = (si−1, π − ψi−1).

Let I be the involution on C given by I(s, ψ) = (s, π − ψ). Clearly I−1 = I.

We have then that T−1
Γ = I ◦ TΓ ◦ I or I ◦ T−1

Γ = TΓ ◦ I, i.e., TΓ is reversible.

Lemma 5. TΓ is a Cj−1 diffeomorphism.

Proof. Let TΓ(s0, ψ0) = (s1, ψ1) and V0 and V1 be two disjoint open intervals containing s0 and
s1 respectively. We define

G : V0 × V1 × (0, π) 7→ R, G(s0, s1, ψ0) =
∂g

∂s0

(s0, s1)− cosψ0.

G is a Cj−1 function, since Γ and g are Cj. Then, by lemma 2, G(s0, s1, ψ0) = 0 and ∂G
∂s1

(s0, s1) =
∂2g

∂s0∂s1
(s0, s1) 6= 0 by lemma 3, since ψ0, ψ1 ∈ (0, π). So we can locally define a Cj−1 function

s1 = s1(s0, ψ0) such that G(s0, s1(s0, ψ0), ψ0) = 0.

Taking now ψ1(s0, ψ0) = arccos(− ∂g
∂s1

(s0, s1(s0, ψ0))) we conclude that TΓ(s0, ψ0) = (s1(s0, ψ0), ψ1(s0, ψ0))

is a Cj−1 function.

As TΓ is invertible, with T−1
Γ = I ◦ TΓ ◦ I, we conclude that TΓ is a Cj−1 diffeomorphism.

Differentiating the expressions cosψ0 = ∂g
∂s0

(s0, s1(s0, ψ0)) and cosψ1(s0, ψ0) = − ∂g
∂s1

(s0, s1(s0, ψ0))
we obtain

Lemma 6.

∂2g

∂s2
0

+
∂2g

∂s0∂s1

∂s1

∂s0

= 0
∂2g

∂s0∂s1

∂s1

∂ψ0

= − sinψ0

∂2g

∂s0∂s1

+
∂2g

∂s2
1

∂s1

∂s0

= sinψ1
∂ψ1

∂s0

∂2g

∂s2
1

∂s1

∂ψ0

= sinψ1
∂ψ1

∂ψ0

Lemma 7. TΓ is a Twist map.

Proof. By lemmas 3 and 6 and remembering that ψ ∈ (0, π) and g < 0, we have that ∂s1
∂ψ0

> 0
and TΓ has the Twist property.

Using the formulas of lemmas 6 and 3, we obtain the derivative of the billiard map as:

Lemma 8. DTΓ(s0, ψ0) =

(
∂s1
∂s0

∂s1
∂ψ0

∂ψ1

∂s0

∂ψ1

∂ψ0

)
where
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• in S2
+

∂s1

∂s0

=
−k0 sin g − sinψ0 cos g

sinψ1

,
∂s1

∂ψ0

=
− sin g

sinψ1

,
∂ψ1

∂ψ0

=
− sinψ1 cos g − k1 sin g

sinψ1

∂ψ1

∂s0

=
−k0 sinψ1 cos g + sinψ0 sinψ1 sin g − k0k1 sin g − k1 sinψ0 cos g

sinψ1

• in H2
+

∂s1

∂s0

=
−k0 sinh g − sinψ0 cosh g

sinψ1

,
∂s1

∂ψ0

= −sinh g

sinψ1

,
∂ψ1

∂ψ0

=
− sinψ1 cosh g − k1 sinh g

sinψ1

∂ψ1

∂s0

=
−k0 sinψ1 cosh g − sinψ0 sinψ1 sinh g − k0k1 sinh g − k1 sinψ0 cosh g

sinψ1

Calculating now the determinant of DTΓ it is easy to see that

Lemma 9. TΓ preserves the measure dµ = sinψdsdψ.

4 Periodic Orbits

The oval billiard map TΓ is then a conservative reversible discrete 2-dimensional dynamical
system, defined by a Cj−1-Twist map, j ≥ 2. To each n-periodic orbit of TΓ is associated a
closed geodesic polygon with vertices on the oval Γ. Among them we distinguish the Birkhoff
periodic orbits of type (m,n), the n-periodic orbits such that the corresponding trajectory
winds m times around Γ before closing, meaning that the orbit has rotation number m/n. The
classical result for Birkhoff periodic orbits of Twist maps (see, for instance, [12], page 356)
applied to our billiards1 states that:

Theorem 2. Given relatively primes m and n, n ≥ 2 and 0 < m < n, there exist at least two
Birkhoff orbits of type (m,n) for the oval billiard map TΓ.

At least two does not necessarily mean in a finite number. As was proved by Bolotin in [4],
the geodesic circular billiard on S is integrable and then has infinitely many Birkhoff orbits
of any period. On the other side, generic C1-diffeomorphisms defined on compact sets have a
finite number of nondegenerate periodic orbits of each period. This will be the case also for
oval billiards on S, although encountering here two main differences: the domain of the billiard
map is an open cylinder and perturbations of billiards as diffeomorphisms may not be billiards.

To circumvent these problems we will perturb the boundary curve Γ, instead of the map itself,
and will find compact sets on the open cylinder where the periodic orbits lay, analogously to
the way it was done by Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho [7] for planar
billiards. For technical reasons that will be clear below, we will only consider C∞ boundary
ovals. Using those facts we will be able to prove that

Theorem 3. For each fixed period n ≥ 2, having only a finite number of n-periodic orbits,
all nondegenerate, is an open and dense property for C∞ oval billiards on H2

+. For C∞ oval
billiards on S2

+ it is only an open property.

1For oval planar billiards, this result was proven by Birkhoff in [2].
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4.1 Normal perturbations of ovals

Let Γ : I 7→ S be a C∞ oval parameterized by the arclength parameter s and η(s) be the
unitary normal vector such that {Γ′(s), η(s)} is an oriented positively and orthonormal basis
of the tangent plane of S at Γ(s).

Definition 3. β is ε-C2-close to Γ if β can be written as

β(s) =


Γ(s) + λ(s)η(s)√

1 + λ2(s)
in S2

+

Γ(s) + λ(s)η(s)√
1− λ2(s)

in H2
+

(3)

where λ : I → R is Cj, j ≥ 2 with ||λ||2 < ε.

Remark that if β is ε-C2-close to Γ then the trace of β is contained on the tubular neighbourhood
Vε(Γ), given by the radial projection of the set {Γ(s)+λη(s), s ∈ I, −ε < λ < ε} onto S, which,
as Γ is an oval, is an open subset of S for ε sufficiently small.

Lemma 10. If ε is sufficiently small, λ is C∞ and β is ε-C2-close to Γ, then β is a C∞ oval.

Proof. As λ is a C∞ function, β is a C∞ curve. As Γ is closed, β is a closed curve.

Moreover, β′(s) = Γ′(s) + R1(s, λ(s), λ′(s)) and β′′(s) = Γ′′(s) + R2(s, λ(s), λ′(s), λ′′(s)) with
||Ri|| → 0 if ||λ||2 → 0, uniformly on s, which implies that, if ε is sufficiently small, β is regular
and has strictly positive geodesic curvature.

Lemma 11. If ε is sufficiently small and β is ε-C2-close to Γ, then their associated generating
functions gΓ and gβ are close in the C2 topology.

Proof. Let Γ be a C∞ oval on S, parameterized by the arclength parameter s and β be a
normal perturbation of Γ as in (3), parameterized by the arclength parameter σ. The generating
functions are gΓ(s0, s1) = −dS(Γ(s0),Γ(s1)) and gβ(s0, s1) = −dS(β(σ(s0)), β(σ(s1))).

The result will follow immediately from the following remarks:
β(s) = Γ(s)+R0(s, λ(s)), β′(s) = Γ′(s)+R1(s, λ(s), λ′(s)), β′′(s) = Γ′′(s)+R2(s, λ(s), λ′(s), λ′′(s))
and σ = s+R3(s, λ, λ′), with ‖Ri‖ → 0 if ‖λ‖2 → 0, uniformly on s.

Proposition 1. If ε is sufficiently small and β is ε-C2-close to Γ then their associated billiard
maps TΓ and Tβ are close in the C1 topology.

Proof. By the construction of the billiard map from the generating function, as was done for
instance in the proof of lemma 5, billiard maps will be close in the C1 topology if their generating
functions are close in the C2 topology. So the result follows directly from the lemma 11.

4.2 Finite number of nondegenerate n-periodic orbits

4.2.1 Openness

Lemma 12. Let Γ : I → S be an oval. There exists a positive real number δn such that any
n-periodic orbit of TΓ has at least one point on the compact strip I × [δn, π − δn].
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Proof. Let {(s0, ψ0), ..., (sn−1, ψn−1)} be an n-periodic orbit of TΓ. Then the points Γ(si) are
the vertices of a geodesic polygon P inscribed on Γ. Let us suppose that this geodesic polygon
is simple and let ζi be the internal angles.

In H2
+, by Gauss-Bonnet Theorem,

∑
ζi ≤ (n − 2)π. Then

∑
ψi ≥ π and there exists i0 such

that ψi0 ≥
π
n
. By the reversibility of TΓ, π − ψi0 ≥

π
n

and then π
n
≤ ψi0 ≤ π − π

n
.

In S2
+, Gauss-Bonnet Theorem gives

∑
ζi > (n−2)π. So we have to work in a slightly different

way. Since Γ(I) ⊂ S2
+ there exists m0 > n such that the area AΓ enclosed by Γ satisfies

AΓ < 2π − πn
m0

. Suppose now that there is an n-periodic orbit {(s0, ψ0), ..., (sn−1, ψn−1)},
associated to a simple geodesic polygon P and such that ψi <

π
m0

for all i. The area AP
enclosed by P satisfies AP < AΓ < 2π − πn

m0
. But, again by Gauss-Bonnet Theorem, AP ≥

2π − 1
2

∑
(π − ζi) = 2π −

∑
ψi > 2π − πn

m0
> AΓ and then there is at least one i0 such that

π
m0

< ψi. Once more, by the reversibility of TΓ, π
m0
≤ ψi0 ≤ π − π

m0
.

If the geodesic polygon P is not simple, we can take a new simple polygon P̃ with the same
vertices on Γ as P and with internal angles ζ̃i. Taking only the internal angles ζi of P at the
vertices on Γ we have that

∑
ζi <

∑
ζ̃i and the result follows.

Proposition 2. For a fixed period n ≥ 2, the set of C∞-ovals on S such that its associated
billiard map has only a finite number of n-periodic orbits, all nondegenerate, is an open set.

Proof. Suppose that the C∞ diffeomorphism TΓ has only nondegenerate n-periodic orbits. To
each one of these orbits corresponds a fixed point of T nΓ on the compact strip I × [δn, π − δn].
So they must be in a finite number and then TΓ has only a finite number of nondegenerate
n-periodic orbits. Taking ε sufficiently small, any perturbation β ε-C2-close to Γ corresponds
to a billiard map Tβ C

1-close to TΓ and will have also only a finite number of nondegenerate
n-periodic orbits.

4.2.2 Density

Suppose {(s0, ψ0), (s1, ψ1), ..., (sn−1, ψn−1)} a degenerate n-periodic orbit for TΓ. As det(DT nΓ |(s0,ψ0)) =
1, being degenerate translates as tr(DT nγ |(s0,ψ0)) = ±2.

By lemma 8

DT n
(s0,ψ0)

= DT(sn−1,ψn−1)DT(sn−2,ψn−2)...DT(s0,ψ0)

=
1

sinψ0... sinψn−1

An−1....A1A0

Each matrix Ai = ki+1kiBi + ki+1Ci + kiDi + Ei, where ki is the geodesic curvature of Γ at si,
and the entries of the matrices Bi, Ci, Di, Ei depend only on the angles ψi and ψi+1 and on the
geodesic distance between Γ(si) and Γ(si+i).

Let us fix our attention on one impact point of the degenerate n-periodic trajectory, say Γ(s1).
If it impacts m1 times at Γ(s1) then

tr(DT n
(s0,ψ0)

) = p1(k1) = bm1k
m1
1 + ...+ b1k1 + c1 = ±2

where the coefficients bj and c1 do not depend on k1.

If any of the bj 6= 0, we can take a sufficiently small normal perturbation β, as in (3), with a
function λ satisfying λ(s1) = 0, λ′(s1) = 0, λ′′(s1) 6= 0, and λ ≡ 0 outside an interval containing
s1 and no other point of the trajectory. So we preserve the periodic orbit but change the
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geodesic curvature at the vertex Γ(s1), which implies tr(DT nβ ) 6= tr(DT nΓ ), i.e, on β the orbit is
nondegenerate.

If all the bj = 0 we take the next impact s2 (as a billiard has no fixed point, s2 6= s1) and then:

tr(DT n
(s0,ψ0)

) = p2(k2) = bm2k
m2
2 + ...+ b1k2 + c2 = c1 = ±2

where the coefficients bj and c2 do not depend on k1 and k2.

If any of the bj 6= 0 we can take the small perturbation β at s2 as above. Otherwise, we continue
the process till the last impact, say s0. We have then

tr(DT n
(s0,ψ0)

) = p0(k0) = bm0k
m0
0 + ...+ b1k0 + c0 = ±2

where the coefficients bj and c0 do not depend any more on any of the geodesic curvatures ki.

For H2
+ we have calculated c0 obtaining c0 = (−1)n2 coshL 6= ±2 where L 6= 0 is the perimeter

of the geodesic polygonal trajectory.

Then, in this case, there is a j such that bj 6= 0 and we can approach TΓ by billiards with a
nondegenerate n-periodic orbit.

As nondegenerate periodic orbits are isolated, with a finite number of perturbations we can
construct an oval β as close as we want to Γ such that the associated billiard map has only a
finite number of nondegenerate n-periodic orbits.

We have then

Proposition 3. For a fixed period n ≥ 2, the set of C∞-ovals on H2
+ such that its associated

billiard map has only a finite number of n-periodic orbits, all nondegenerate, is a dense set.

Unfortunately, the same techniques do not work at S2
+. If all the bj are zero except for the last

impact s0 we get tr(DT n
(s0,ψ0)

) = p0(k0) = bm0k
m0
0 + ...+ b1k0 + c0 = ±2 where, taking L as the

perimeter of the trajectory, c0 = (−1)n 2 cosL and all the coefficients bj are multiples of sinL.
So, if L = µπ, c0 = ±2 and all the bj = 0 and our normal perturbation do not destroy the
degenerescence of the orbit.

Summarizing we have

Theorem 4. For each fixed period n ≥ 2, having only a finite number of n-periodic orbits,
all nondegenerate, is an open and dense property for C∞ oval billiards on H2

+. For C∞ oval
billiards on S2

+ it is only an open property.

4.2.3 A remark about the planar case

Dias Carneiro, Oliffson Kamphorst and Pinto-de-Carvalho [7] proved that having only a finite
number of n-periodic orbits, all nondegenerate, is a generic property for C2 planar oval billiards.

Although their result is true, they did not analyze the trajectories with multiple impact points.
Using our techniques we can fill in this gap remarking that if all the bj are zero we get in the
final step

tr(DT n
(s0,ψ0)

) = p0(k0) = bm0k
m0
0 + ...+ b1k0 + (−1)n2L = ±2

where L the perimeter of the trajectory.

If L 6= 1, c0 6= ±2 and then there is a bj 6= 0 and the special normal perturbation on the plane
destroys the degenerescence.

If L = 1, the first coefficient b1 = (−1)n+12( 1
sinψ0

+ ... + 1
sinψm0

) 6= 0 and, again, the special

normal perturbation solves the problem.
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4.3 Stability of periodic orbits

Let O(s0, ψ0) = {(s0, ψ0), (s1, ψ1), ..., (sn−1, ψn−1)} be an n-periodic orbit for TΓ.

As det(DT nΓ |(s0,ψ0)) = 1, O(s0, ψ0) is hyperbolic if |tr(DT nγ |(s0,ψ0))| > 2, elliptic if |tr(DT nγ |(s0,ψ0))| <
2 and parabolic if |tr(DT nγ |(s0,ψ0))| = 2.

Let W (s0, s1, ..., sn−1) =
∑n−1

i=0 g(si, si+1), where g(s0, s1) = −ds(Γ(s0),Γ(s1)) is the generating
function and sn = s0, be the action defined on the n-torus R/lZ × ... × R/lZ minus the set
{(s0, s1, ..., sn−1) s.t∃i 6= j with si = sj}.
The critical points of W are the coordinates of the vertices on Γ of the n-periodic trajectories,
since ∂g

∂si
(si−1, si) = − ∂g

∂si
(si, si+1). Remark that W < 0 and it will always have a global

minimum (perhaps degenerate), but not a global maximum.

The MacKay-Meiss formula [15] relates the derivative of T nΓ with the Hessian matrix H of W
by

2− trDT nΓ |(s0,ψ0) = (−1)n+1 detH

b0b1...bn−1

where bi = ∂2g
∂si∂si+1

(si, si+1).

It implies that the nondegenerate critical points of the action W are the nondegenerate n-
periodic orbits of TΓ.

So, if TΓ has only nondegenerate n-periodic orbits, the nondegenerate minima of W will always
be hyperbolic. The other n-periodic orbits can be either hyperbolic or elliptic.
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