A Matemática Helênica

II) O primeiro round da luta Discreto x Contínuo

Sônia Pinto de Carvalho

O problema colocado pela descoberta dos irracionais pelos pitagóricos me parece bem definido por Arnold Reymond [4]: "O realismo aritmético, ingenuamente proclamado pelos pitagóricos, foi derrubado pela descoberta de que, num quadrado, a diagonal e o lado são incomensuráveis. Se o espaço é número ou razão entre números, esta descoberta é desconcertante. Os pitagóricos, sem dúvida, não pretendem avaliar o número de pontos que compõem, de fato, um segmento de reta, mas afirmam que este número existe e que é forçosamente inteiro, já que o ponto é indivisível. Entre duas retas de comprimentos diferentes A e B, deve então existir uma relação A/B na qual A e B, representando uma soma de pontos, são necessariamente dois números inteiros." ¹

No fundo, o que os pitagóricos afirmam é que um segmento de reta não pode ser infinitamente divisível. Ele só pode ser dividido até se chegar em sua parte menor, indivisível: o ponto.

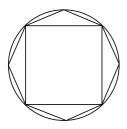
O tempo passa, a Irmandade Pitagórica foi destruida, mas continuam existindo seguidores de suas idéias. Atenas se recompõe e torna-se o centro cultural do mundo grego. Surge aí a Escola dos Sofistas, de sofia que significa sabedoria. Eles dão aulas de retórica, matemática, filosofia e astronomia. São os primeiros a aceitar pagamento pelas aulas ministradas.

Os principais sofistas, do ponto de vista da matemática, são Hipócrates de Quiós (\sim 430 a.C.), que não deve ser confundido com o médico, Antifonte, contemporâneo de Hipócrates, e Hípias de Elis, que nasceu por volta de 460 a.C. Eles trabalhavam em geometria, com construções com régua e compasso, essencialmente em cima de três problemas:

- a trissecção do ângulo, isto é, dividir um ângulo dado em 3 partes iguais;
- a duplicação do cubo, isto é, determinar a aresta de um cubo cujo volume seja o dobro de um cubo dado;
- a quadratura do círculo, isto é, determinar o lado do quadrado cuja área seja a de um círculo dado.

Apesar dos sofistas terem feito muitas coisas, neste texto vou discutir apenas um trabalho de Antifonte relacionado com a quadratura do círculo. Ele nos ajudará a compreender como se colocou definitivamente na história da matemática, a questão do contínuo e do discreto.

Antifonte raciocinou da seguinte maneira: se conhecermos a área do círculo em função de coisas que sabemos quadrar, o problema estará resolvido. Ora, sabemos quadrar polígonos regulares, pois sabemos quadrar triângulos e podemos decompor qualquer polígono em triângulos. Assim, Antifonte "bolou" o seguinte método:

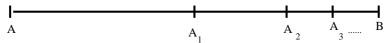


tome um círculo. Inscreva nele um quadrado. Sobre cada lado do quadrado, coloque um triângulo isósceles cujos vértices estão sobre o círculo. Continue o processo sobre os lados do octógono. E faça sempre do mesmo jeito.Pensou Antifonte: se eu posso contar o número de pontos que existem em um segmento de reta então também posso contar o número de pontos que existem em um círculo. Este número de pontos será então o maior número de lados que posso ter num polígono inscrito num círculo, isto é, um círculo é um polígono regular com un número (grande) de lados. Como sei quadrar qualquer polígono, sei quadrar um círculo!

Esta solução apresentada por Antifonte vai causar muita polêmica. Aceitá-la significa aceitar que um arco de círculo coincide com um segmento de reta. Não aceitá-la implica assumir a infinita divisibilidade de uma linha, pois poderemos sempre tomar o ponto médio do arco de círculo e traçar um polígono com um número maior de lados.

¹em francês no original

É exatamente em cima desta polêmica que Zenão de Eléia (\sim 450 a.C.), discípulo de Parmênides, vem defender a posição de seu mestre, que afirma que o movimento não existe, ele é mera aparência. Suponhamos, dizia Zenão, a infinita divisibilidade da reta. Então, para ir de um ponto a outro temos que passar pelo ponto médio. E se existem infinitos pontos médios... nunca chegaremos ao fim do segmento (este paradoxo é enunciado por Zenão como a história de Aquiles e o estádio).



Temos então que supor que uma reta não pode ser dividida infinitamente, se acreditamos na realidade do movimento. Tomemos, pois, uma flecha em movimento durante um certo intervalo de tempo ΔT . Já que o movimento existe, este intervalo de tempo ΔT só terá um número finito de instantes. Em cada instante, a flecha estará parada, como numa fotografia. E uma coleção finita de flechas paradas não pode estar em movimento (este paradoxo se chama paradoxo da flecha). Logo, o movimento não existe!

Zenão criou um problema sério para a matemática, que só será resolvido muito mais tarde, no século XIX: a questão do contínuo, ligada à questão do infinito.

Uma primeira tentativa de resposta virá da Academia de Platão. Eudoxo ($\sim 408-\sim 355$ a.C.) assume a infinita divisibilidade da reta e cria o "método de exaustão" para calcular a área do círculo. Ele usa a mesma idéia de Antifonte só que, ao assumir a infinita divisibilidade, afirma que os polígonos se aproximam do círculo mas nunca coincidem com ele. Isto implica que não se pode calcular a área do círculo com um número finito de cálculos a não ser que se conheça uma teoria de limites ou que se consiga dar a volta por cima. É desta última maneira que Eudoxo se comporta.

"A chave do sucesso de Eudoxo (como acontece quase sempre na matemática) foi a boa formulação de uma definição de proporcionalidade entre razões de grandezas geométricas" [2]

Mas esta história fica para um próximo capítulo....

References

- [1] F.Cajori: A History of Mathematics, The Macmillan Co, NY, 1924.
- [2] C.H. Edwards Jr.: The Historical Development of the Calculus, Springer-Verlag, Ny, 1982.
- [3] M. Kline: Mathematics in the western culture, George Allen and Unwin Ltda, Londres, 1954.
- [4] A.Reymond: Histoire des Sciences Exactes et Naturelles dans l'Antiquité Greco Romaine, PUF, Paris, 1955.