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e Natural generalization of the one dimensional Fermi accelerator model:
particle bouncing between two moving walls.

e Simple example of time dependent Hamiltonian systems.

Fundamental question: a particle moving inside a bounded region and under-
going elastic collisions with a moving boundary can be given unlimited energy?

Exact and numerical results indicate that the answer depends on the nature of
the phase space of the static model and on the shape of the boundary.
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1 General description: ingredients

e A time-dependent plane region whose boundary moves transversally as a
periodic function of time. The billiard problem on it consists on the free
motion of a point particle inside this region, colliding elastically with the
pulsating boundary.

e A time dependent Hamiltonian with 2 degrees of freedom.

e Use energy (and its canonical conjugate variable time) as variables, intro-
ducing an autonomous system in 6 dimensions.

e The continuous time model can be translated (using the usual billiard
coordinates) into a 4 dimensional map describing successive impacts with
the moving boundary.

Coordinates:

s position on the instantaneous boundary

e Geometrical coordinates ) ) )
o direction of motion

E  energy

B :
* Energy coordinates { t instant (phase) of the impact

(50, 0, V0, to) — (81, 1, v1, 1)

Is an implicitly defined diffeomorphism preserving the measure
dw = (vsina + u) dsdadE dt

u: outward normal velocity of the boundary, v = v2FE : particle speed

K

Figure 1: a) Moving out wall: decrease (normal) velocity; b) Moving in wall: increase velocity



2 The Breathing Circle: integrable models

The breathing circle is the region bounded instantaneously by a circle whose
radius is a periodic function of time. In this special model, the angular momen-
tum is conserved, implying a reduction to a 2-dimensional diffeomorphism.

Theorem 1 Given the billiard on the breathing circle x* + y* = R(t)?, with
R(t) a strictly positive T-periodic C* function, k > 7, then, for any admissible
wnatial condition, a particle will move with bounded velocity.

Proof: For each fixed value of the angu-
lar momentum and v sufficiently high, we
demonstrate the existence of invariant span-
ning curves, using a corollary of Herman’s
Théoreme des Courbes 'Transladées by R.
Douady. These spanning curves are invariant

curves around the elliptic fixed point at infin- Dz ;_

v X t(mod 27)

Remark 1 This result may probably be extended for quast periodic motion of
the boundary applying the results of [3].

Figure 2: Quasi periodic breathing circle R(t) = 1 4 €; coswit + €5 coswat with €, = €5 = 0.1,
w1 = 1 and wy = /2. Trajectory, phase space and mean velocity for a = 0.37, v = 5:

Remark 2 Some numerical results indicate that the oscillating elliptical bil-
liard, also has bounded energy.



3 Fermi acceleration

Unbounded velocity occurs for:

e One dimension with periodic non smooth movement of the walls (Lichten-
berg and Lieberman, Douady)

e 2 dimensional billiards with random exchange of energy with the walls. (In
this case, the evolution of the velocity may be described by a random walk
implying the exponent 1/2.)

Ostochastic circle, n=0.1, v,=1.0

best fit, slope= 0.493 (2)
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Figure 3: Stochastic circle - Mean velocity after 10° iterations, averaged over 100 initial condi-

tions

e Lorentz gas (Loskutov et al)
e Chaotic orbits in stadium-like (Loskutov et al) or oval (Leonel) billiards.
Old conjecture: If the particle undergoes a chaotic motion it can be given

unlimited energy by a regular and periodic motion of the boundary. Regular
trajectories have bounded energy.

We present numerical evidences that this is not generally true.



4 A family of non integrable billiards

Consider curves defined in polar coordinates by
R(0) =1+ ecos26

It is strictly convex if € < 0.2. If € > 0.2 it has nonconvex pieces and for ¢ > 1
the curve has self intersection and is no more simple.

v w \_}/ N4

Figure 4: Curves for e = 0.05 , 0.15, 0.2 and 0.4

The billiard map has a period 2 orbit for § = +7/2. It is elliptic for € < 0.2
and hyperbolic for € > 0.2. As long as the billiard is strictly convex, there are
rotational invariant curves close to the boundary, which disappear for ¢ > 0.2.

Figure 5: Phase space for € = 0.05, 0.15 and 0.4

The system is non integrable and, at least numerically, has both regular and
irregular orbits.

Time dependent perturbations are defined by
R(0,t) = (1 +mocost) + e(1 + m cost) cos 26
If 71 = 19 shape is preserved, we call it breathing mode.

Although we are investigating a lot of different situations we will present here
the perturbation of the curve corresponding to ¢ = 0.4 because it has a large
chaotic region where Fermi Acceleration may occur.
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Notation

e V,, : modulus of the velocity after n collisions (iterations)
E,, : energy after n iterations.
1 n
o V,\ = > Vj : orbit average of V' after n iterations
n + 1 =0
. 1

n —

n
> E; : orbit average of E after n iterations.
n + 1 =0

e < .>: ensemble average (over initial conditions).



5 No Fermi Acceleration in the chaotic

breathing mode with ¢ =04
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Figure 6: Averaged mean velocity for breathing mode

Figure 7: Orbit generated by a single initial condition
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6 Fermi acceleration with an exponent larger than 1/2
for other modes (changing shape) with ¢ = 0.4
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7 Fermi acceleration for all modes, including the breath-
ing, for the simplified model

The the simplified model is an approximation widely used in the literature, in
particle all the results obtained by Loskutov are for simplified models.

One allows the boundary to interact with the particle through momentum ex-
change, but assuming that the boundary does not change in time and so

R(6,t) ~ R(0,0)
There is no fundamental difference between a model changing shape or not.
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Figure 9: Simplified models



8 Stability /Instability x Fermi Acceleration

For small e the billiard has many regular (stable) regions, corresponding to
invariant curves and elliptical islands. Is also has instability regions, corre-
sponding to hyperbolic behaviour.

All the results bellow are for R(0,t) = 1+ €(1 4 1y cost) cos 20;

81 €=0.05and n =0.5

Fermi acceleration for an orbit spanning unstable regions of the geometrical
phase space:

Figure 10: V,,, V* and sampled geometrical phase space for 2 x 107 iterations of an initial
condition in an instability region.

No Fermi acceleration for an orbit staying in a stable region of the geometrical

phase space:

Figure 11: V,, V¥ and sampled geometrical phase space for 2 x 107 iterations of an initial
condition in a stable region.
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8.2 €e=0.15and n =0.25

Fermi acceleration for an orbit spanning unstable regions of the geometrical
phase space:

/
Figure 12: V,,, V* and sampled geometrical phase space for 2 x 10° iterations of an initial

condition in an instability region.

Fermi acceleration for an orbit in the regular region of the phase space after
crossover to unstable regions.

Figure 13: V,, V* and sampled geometrical phase space for 2 x 107 iterations of an initial
condition in a stable region.
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9 Questions

e [s there or not Fermi acceleration for the breathing models? If not, why?
e What is the difference between the simplified and the complete model?

e Can one prove the existence of Fermi acceleration for a given model?

e Why is the exponent of the Fermi acceleration bigger than 1/27?

e Is there always a crossover between regions of the geometrical phase space
induced by the time dependent perturbation of the moving boundary or
are there invariant regions?
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