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Abstract

We study the one-dimensional logistic map with parametric perturbation. Using a small peri-
odic function as the perturbation, new attractors may appear. Beside these new attractors, complex
attractors exist and are responsible for transients in many trajectories. We observe that each one
of these transients is characterized by a power law decay. We 5nd the exponent related to this
decay. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The one-dimensional logistic map has been extensively studied in the past years
[1–3]. This map describes the typical behavior of many dissipative dynamical systems
and has applications in physics, biology, electronics and many other di+erent subjects.

Di+erent kinds of the perturbation can be introduced in the logistic map, like the
additive perturbation [2], the parametric perturbation [4], or both. Our main goal in
this paper is to investigate the e+ect of a small parametric perturbation in the lo-
gistic map and obtain the exponent related to the power law decay of the transient
time.
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The logistic map considered in this work is de5ned by

Xn+1 = Fn(Xn) = RnXn(1 − Xn) ; (1)

Rn = R+ �f(n) ; (2)

where X ∈ [0; 1] and � is a small number and f(n) is a periodic function. For � = 0,
we have the conventional logistic map [5] and for � �= 0, we have the so called
time-dependent case. Typically, as the control parameter R varies, attractors may appear
or change stability. In particular, a complex 5xed point may become real at R=Rc. For
R¡Rc, the still complex attractors are responsible for transients in many trajectories.
We obtain numerically the z exponent which characterizes this transient. This paper is
organized as follows: In Section 2, we discuss the logistic map with a control parameter
of period 2. We 5nd the values of R where the new attractors become real and describe
the mechanism of this creation. We also obtain the z exponent related to the observed
transient time. A similar process with a control parameter of period 3 is also described.
Our conclusions are presented in the last section.

2. Periodic control parameter

Let us consider here the logistic map with a control parameter of period 2 [4,6]. This
situation can be modeled by Eqs. (1) and (2) with f(n) = cos(n�). Since R oscillates
between two values R(1 + �) and R(1 − �), the logistic map will have 5xed points
also periodic in time (n). This means that Fn(Xa) = Xb and Fn+1(Xb) = Xa. We rather
call this situation as time dependent, in fact a periodic, 5xed point than a cycle-2, as
almost all initial conditions will asymptotically oscillate between Xa and Xb. So we
have a time dependent 5xed point [7].

The 5xed points are obtained by solving the equation X ∗
n+2 = X ∗

n , where iteration is
de5ned by Eqs. (1) and (2). The problem has three non-zero solutions for n even (odd).
At least one of them is real and corresponds to a 5xed point X∗

1 = (Xa; Xb). If we 5x
� and start increasing R, this 5xed point becomes unstable and a cycle-2 (of period 2)
becomes stable. So, as R is varied we have the usual sequence of period doubling until
the chaotic behavior is reached. The other two roots of the 5xed point equation change
from complex to real by increasing R. The particular value of the control parameter
where complex 5xed points become real is named Rc. One of these new 5xed points
is unstable and the others are stable. This new stable 5xed point X∗

2 coexists with
the original real 5xed point or with one of its stable descendent cycle-m. It has its
own basin of attraction. In fact, some of the initial conditions belong to the basin of
attraction of X∗

2 and others belong to the basin of the stable cycle-m (m=1; 2; 3; 4 : : :),
which appears in the bifurcation sequence originated from X∗

1 . The new 5xed point,
X∗

2 , gives rise to a second sequence of bifurcations as R is varied.
The picture described above depends on �. For example, if � = 0:01 we have that

Rc∼ 3:144390069. For R¡Rc we have only a 5xed point of period two X∗
1 that
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Fig. 1. Orbit diagram for Rn = R(1 + � cos(n�)). (a) The initial condition is X0 = 1=2. For
R¡Rc = 3:1443900 : : : ; X0 is attracted by the real periodic 5xed point; for R = Rc, we have a new real
periodic 5xed point responsible for a second basin of attraction. The discontinuity at Rc is due to the fact
that X0 is then attracted by the new 5xed point. (b) The initial condition is X0 = 0:2.

attracts almost all initial conditions. When R¿Rc we have two stable 5xed points of
period two, X∗

1 and X∗
2 , each one with its own basin of attraction. The sudden birth

of a new basin of attraction can be observed in the orbit diagram as a discontinuity.
In Fig. 1 the orbit diagram for this value of � and two di+erent initial conditions is
shown: (a) X0 = 0:5 and (b) X0 = 0:2. The discontinuity at Rc in Fig. 1(a) means
that X0 = 0:5 has changed basin of attraction. This does not occur for X0 = 0:2 (see
Fig. 1(b)).

We have then a description of the mechanism in which the new attraction basins
appear. The transition from one basin to another may be characterized by a transient
time. For R¡Rc an initial condition X0 is attracted asymptotically to the 5xed point
X∗

1 , but before reaching this 5xed point the system may spend a long time near the
real part of the (still) complex 5xed point X∗

2 . This time is the transient time �. As
long as R approaches Rc; � grows up and for R = Rc it diverges, meaning that now
the system spends all the time in the neighborhood of the new real 5xed point. The
divergence of the transient time at Rc is given by � ∼ �−z, where � = |R − Rc|. In
Fig. 2(a) it is shown the time evolution of X0 = 0:5. Observe that the transition from
one 5xed point to the other one is very sharp. It is then easy to evaluate the transient
time. In Fig. 2(b) the evaluated transient time is given for di+erent values of �. The
exponent z = 0:501(1) was obtained by a least squares 5tting.

A similar situation may occur when a complex 5xed point becomes real and stable
when a cycle-m is already stable. This is the case for � = 0:038. The 5xed point X∗

2

becomes real and stable at R=Rc ∼ 3:372405139. When R¡Rc= ; X∗
2 is complex and

a cycle-2 of period 2 attracts all the initial conditions. In this case we have a transient
time that is characterized by the exponent z = 0:506(2).
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Fig. 2. The control parameter is given by Rn = R(1 + � cos(n�)). (a) Orbit of X0 = 1=2 when
R¡Rc = 3:1443900 : : : . In this situation the new attractor is complex and responsible for a transient.
The orbit spends a long time near the real part of the complex attractor (n¡ 6450) before reaching the real
periodic 5xed point. The arrow shows the transition de5ning the transient time. (b) Plot of transient time
versus �. A least squares 5tting furnishes z = 0:501(1).

Fig. 3. (a) Orbit of the initial condition X0 = 1=2 for Rn = R(1 + � cos(n�)) with R¡Rc = 3:47726581 : : : .
There are a real chaotic attractor and a complex periodic 5xed point. The sharp transition characterizes the
time transient. (b) Transient time by �. A least squares 5tting give us the exponent z = 0:502(2).

For �=0:053 and R¡Rc ∼ 3:477265810 we have a chaotic attractor and a transient
occurs between it and the real part of the complex 5xed point. This is shown in
Fig. 3(a). The transient times for several values � are shown in Fig. 3(b). A least
squares 5tting furnishes z = 0:502(2).

The transients described above may be compared to the intermittence phenomenon.
In the intermittent behavior we have the coexistence between an established chaotic
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regime and a cycle-m which would be the attractor for a slight change in the control
parameter. There is a channel between the graph of the map F (m) and the straight line
y = x. As an initial condition is iterated it can enter into this channel and thus have
a cycle-like behavior. When it gets out of the channel we have the so-called burst of
chaotic behavior. Due to a reinjection mechanism the system enters the channel and
gets out frequently. A characteristic time � is de5ned as the average time of bursts and
is characterized by z = 0:5. In our case, we also have a channel related to a tangent
bifurcation but there is no reinjection mechanism. In fact, the system enters the channel
only once and spends a long time there, which also seems to be characterized by z=0:5.

A similar process is observed when we have a time dependent control parameter with
period three. For example, when Rn=R(1+� cos(2=3n�), we have 3 possible values for
Rn, namely Ra=R(1−�=2); Rb=R(1−�=2) and Rc=R(1+�). In order to obtain the 5xed
points, we need to solve the equation X ∗

n+3 = X ∗
n , which gives us 7 non-zero roots for

each value of n=1; 2; 3. Using �=0:01, one of the 7 roots is at 5rst real and the other
ones are complex. These complex solutions become real in pairs for speci5c values
of R. In this case, they became real for R1 = 3:783544316 : : : ; R2 = 3:850718107 : : :
and R3 =3:851414845 : : : . We observe again a similar transient and similar mechanism
of creation of the new attractors. The z exponents can be obtained numerically and we
have found a value around 0:5 for all transients.

3. Conclusions

We studied the logistic map with a parametric perturbation. We described how a
complex solution becomes real at R=Rc implying the creation of a new attractor. For
R¡Rc, we obtained the z exponent related to a transient time. For Rn=R(1+� cos(n�))
we obtained that Rc depends on �. Also depending on �, the new attractor may arise
when the old attractor was a periodic 5xed point, a periodic cycle-2, and so on, until
the chaotic attractor. For each situation, the z exponent was found to be approximately
0:5. The same results were observed for Rn with period 3, i.e., Rn=R(1+� cos(2=3n�)).
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