Universidade Federal de Minas Gerais Instituto de Ciências Exatas – ICEx Departamento de Matemática

Cálculo Diferencial e Integral I - Teste 7 (v1)

Soluções do Teste

Questão 1: Calcule a área da região fechada delimitada pelas curvas:

$$y = 2 \qquad y = x^2 - x$$

Solução:

Pontos de interseção das curvas: $x^2 - x = 2$: x = 2 ou x = -1.

Qual curva fica acima da outra entre os pontos de interseção? Resposta: y = 2 fica acima de $y = x^2 - x$, pois o gráfico da última é uma parábola com concavidade para cima.

Krea:
$$A = \int_{-1}^{2} (2 - x^2 + x) dx = (2x + x^2/2 - x^3/3)|_{-1}^{2} = (4 + 2 - 8/3) - (-2 + 1/2 + 1/3) = 9/2$$

Questão 2: Calcule o volume do sólido de revolução obtido com a rotação em torno do eixo x da área da região fechada delimitada pelas curvas:

$$y = \sqrt{x}$$
 $y = x^2$

Solução:

Pontos de interseção: x = 0 e x = 1.

Posição relativa das curvas: $\sqrt{x} > x^2$ para todo x pertencente ao intervalo 0 < x < 1 Então:

$$V = \int_0^1 \pi(\sqrt{x})^2 dx - \int_0^1 \pi(x^2)^2 dx = \frac{\pi}{2} x^2 \Big|_0^1 - \frac{\pi}{5} x^5 \Big|_0^1 = \frac{\pi}{2} - \frac{\pi}{5}$$

Questão 3: Calcule o volume do sólido de revolução obtido com a rotação em torno do eixo y da área delimitada pelas curvas:

$$y = \sqrt{x}$$
 $y = -\sqrt{x}$ $x = 1$

Solução:

A área é delimitada quando x varia no intervalo: $0 \le x \le 1$. Isso ocorre quando y varia no intervalo: $0 \le y \le 1$, na função $y = \sqrt{x}$, $e^{-1} \le y \le 0$,

na função
$$y=-\sqrt{x}$$
.
Em termos da variável y , ambas as funções ficam: $x=y^2$.
Então: $V=\int_{-1}^1\pi(y^2)^2\,dy=\frac{\pi}{5}y^5|_{-1}^1=\frac{2\pi}{5}$