Universidade Federal de Minas Gerais

Av. Antônio Carlos, 6627, Belo Horizonte

CEP: 31270-901, Brasil

Email: lastname at ufmg dot br

Telephone: (+55) (31) 3409 5789 (office)

Fax: (+55) (31) 3409 5692 (secretaria)

- Tópicos para projetos de mestrado.

- Reconstruction and isomorphism problems in combinatorics and graph theory
- Posets and lattices of graphs; polynomial invariants of graphs
- Algebraic and enumerative combinatorics
- Experimental and computational mathematics, and software development. https://github.com/hopfmonoid

- The connected partition lattice of a graph and the reconstruction
conjecture.
J. Graph Theory,
(2019). DOI: https://doi.org/10.1002/jgt.22481

- The edge-subgraph poset of a graph and the edge reconstruction
conjecture.
J. Graph Theory,
(2019). DOI: https://doi.org/10.1002/jgt.22454

- (with Raazesh Sainudiin
and Amandine Véber) Ancestries of a Recombining Diploid
Population. Journal of
Mathematical Biology (2016). DOI:
http://dx.doi.org/10.1007/s00285-015-0886-z

- (with Igor C. Oliveira) An algebraic
formulation of the graph reconstruction conjecture.
Journal of Graph Theory
(2016). arXiv DOI: http://dx.doi.org/10.1002/jgt.21880

- (with Daniel Martin) The maximum common subtree
problem, Discrete Applied
Mathematics 161 (2013), pp. 1805-1817.
arXiv DOI:
http://dx.doi.org/10.1016/j.dam.2013.02.037

- Reconstructing pedigrees: some identifiability questions for a
recombination-mutation model. Journal of Mathematical Biology 66, issue 1-2
(2013) 37-74.
arXiv DOI:
http://dx.doi.org/10.1007/s00285-011-0503-8

- (with C. Richard
and U. Schwerdtfeger) Area laws for
symmetry classes of convex polygons. Combinatorics, Probability and Computing 19,
no. 3 (2010) 441-461. arXiv DOI:
http://dx.doi.org/10.1017/S0963548309990629

- (with Mareike Fischer) Revisiting an equivalence
between maximum parsimony and maximum likelihood methods in
phylogenetics. Bulletin of
Mathematical Biology 72, no. 1 (2010)
208-220.arXiv DOI:
http://dx.doi.org/10.1007/s11538-009-9446-2

- (with Mareike Fischer) Maximum Parsimony on Subsets of
Taxa. Journal of
Theoretical Biology 260, no. 2 (2009)
290--293. arXiv DOI:
http://dx.doi.org/10.1016/j.jtbi.2009.06.010

- Combinatorics of pedigrees I: counter examples to a
reconstruction problem. SIAM Journal of Discrete Mathematics 22, no. 3
(2008) 961-970. arXiv DOI: http://dx.doi.org/10.1137/060675964

- (with Mike Steel) Reconstructing
pedigrees: a stochastic perspective. J. Theoretical Biology 251, no. 3 (2008)
240-249. arXiv DOI:
http://dx.doi.org/10.1016/j.jtbi.2007.12.004

- A correct proof of the McMorris-Powers' theorem on the consensus
of phylogenies. Discrete
Applied Mathematics, Volume 155, Issue 3
(2007), 423-427. arXiv DOI:
http://dx.doi.org/10.1016/j.dam.2006.06.002

- Invertibility of the TKF model of sequence
evolution. Mathematical
Biosciences 200, no. 1 (2006)
58-75. arXiv DOI:
http://dx.doi.org/10.1016/j.mbs.2005.12.025

- Kocay's lemma, Whitney's theorem, and some polynomial invariant
reconstruction problems. The Electronic Journal of Combinatorics 12
(2005), #R63, 30
pages. arXiv
URL

- (with I.Krasikov and A.Lev) Upper
bounds on the automorphism group of a
graph. Discrete
Mathematics 256 (2002)
489-493. arXiv DOI:
http://dx.doi.org/10.1016/S0012-365X%2802%2900393-X

- G-reconstruction of graphs. Ars Combinatoria 54 (2000)
293-299. arXiv

- A reconstruction problem related to balance equations-II: the
general case. Discrete
Mathematics 194, no. 1-3(1999) 281-284. Note that the revised
version on the arXiv is more accurate, with some
extra details in the proof of a lemma. DOI:
http://dx.doi.org/10.1016/S0012-365X%2898%2900054-5

- A reconstruction problem related to balance
equations-I. Discrete
Mathematics 176 (1997)
279-284. arXiv DOI:
http://dx.doi.org/10.1016/S0012-365X%2896%2900312-3

- Comments on a paper: "Reconstruction of a graph of order p from its (p-1)-complements" [Indian J. Pure Appl. Math., 27 (1996), no. 5, 435-441; MR 97a:05158] by E. Sampathkumar and L. Pushpa Latha. Indian J. Pure Appl. Math 27 (1996) 1279-1279.
- A note on a reconstruction
problem. Discrete
Mathematics 137 (1995) 387-388. DOI:
http://dx.doi.org/10.1016/0012-365X%2893%29E0151-S

- Some results on the reconstruction problems-I: $p$-claw-free,
chordal and $P_4$ reducible graphs. J. Graph Theory 19, no. 4 (1995) 549-561. DOI:
http://dx.doi.org/10.1002/jgt.3190190409

- Some results and approaches for reconstruction conjectures,
Presented at the First Malta Conference on Graph Theory,
May-June 1990.
Discrete
Mathematics 124, no. 1-3(1994) 193-216. DOI:
http://dx.doi.org/10.1016/0012-365X(92)00061-U

- On the Nash-Williams' lemma in graph reconstruction
theory. J. Combinatorial
Theory Ser. B. 58 no. 2(1993) 280-290. DOI:
http://dx.doi.org/10.1006/jctb.1993.1044

- (with Maurice Pouzet and Hamza Si Kaddour) A note on the Boolean dimension of a graph and other related parameters. Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020).
- (with Rodrigo Caetano Rocha) Distributed cycle detection in
large-scale sparse graphs. SBPO 2015 - Simpósio Brasileiro de Pesquisa
Operacional, Pernambuco, Brazil.
URL

- (with Mike Hendy) MANTRA - A Multiple Alignment and Tree
Reconstruction Algorithm. Proceedings of the 15th Australasian Workshop on
Combinatorial Algorithms (AWOCA), July 2004, 121-12.

- (with Maurice Pouzet and Hamza Si Kaddour) A note on the Boolean dimension of a graph and other related parameters. Submitted for publication, 2021. (This is a much more extended version of the ALGOS 2020 conference paper listed above.) arXiv
- (with Deisiane Lopes Gonçalves) A construction of the abstract induced subgraph poset of a graph from its abstract edge subgraph poset. (2020). arXiv PDF
- Can hybridisation networks be constructed from local information? (2007).PDF