Modeling the prevalence of Schistosoma mansoni infection in an endemic population 

R. Oliveira-Prado, M. Alvares de Souza Cabral, S. Oliffson Kamphorst, S. Pinto-de-Carvalho, R. Corrˆea-Oliveira, A. Gazzinelli, 2017 

 

Periodic orbits of oval billiards on surfaces of constant curvature 

L.Coutinho dos Santos, S.Pinto-de-Carvalho, Dynamical Systems, 2016

 

Oval Billiards on Surfaces of Constant Curvature 

L.Coutinho dos Santos, S.Pinto-de-Carvalho, 2014

 

Nonpersistence of resonant caustics in perturbed elliptic billiards 

S.Pinto-de-Carvalho, R.Ramírez-Ros, Ergodic Theory & Dynamical Systems,  33, p. 1876-1890, 2013.

 

Billiards with a given number of (k,n)-orbits 

S.Pinto-de-Carvalho, R.Ramírez-Ros, Chaos,  22, p. 026109, 2012. 

 

Limit Sets of Convex non Elastic Billiards  

R. Markarian, S. Oliffson Kamphorst, S.Pinto-de-Carvalho, Dynamical Systems (Print), 27, p. 271, 2012.


Periodic Orbits of Generic Oval Billiards
 

M.J.Dias Carneiro, S. Oliffson Kamphorst, S. Pinto-de-Carvalho, Nonlinearity 20, 24532462, 2007.

Periodic Orbits for Billiards on Ovals
M.J.Dias Carneiro, S. Oliffson Kamphorst, S. Pinto-de-Carvalho

The Primary Instability Zone for Billiards on Ovals
M.J.Dias Carneiro, S. Oliffson Kamphorst, S. Pinto-de-Carvalho

The First Birkhoff Coefficient and the Stability of 2-periodic Orbits on Billiards .
S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Experimental Mathematics, 14/3, 299-306 (2005).
Software: First Birkhoff coefficient for 2-periodic orbits on billiards
Worksheets (mws): 0ThreeJet 1TaylorCoeffs 2Complex 3NormalForm 4Tau

Elliptic islands on strictly convex billiards.
M.J. Dias Carneiro, S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Ergodic Theory and Dynamical Systems, 23/3 , 799-812 (2003)
 Worksheet: The third jet of a billiard map (mws)

Elliptic islands on the elliptical stadium .
S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Discrete and Continuous Dynamical Systems,  7/4, 663-674 (2001)
 
Bounded gain of energy in the breathing circle billiard.
S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Nonlinearity,  12, 1363-1371 (1999)
 
A lower bound for chaos in the elliptical stadium .
E. Canale, R. Markarian, S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Physica D,  115/3-4, 189-202 (1998).
 
Static and time-dependent perturbations of the classical elliptical billiard.
J. Koiller, R. Markarian, S. Oliffson Kamphorst, S. Pinto de Carvalho; Journal of Statistical Physics,  83, 127-143 (1996).
 
Chaotic properties of the elliptical stadium  .
R. Markarian, S. Oliffson Kamphorst, S. Pinto de Carvalho; Communications in Mathematical Physics,  174, 661-679 (1996).
 
A geometric framework for billiards with time-dependent boundaries.
J.Koiller, R.Markarian, S. Oliffson Kamphorst, S. Pinto de Carvalho; New trends in Hamiltonian Systems (Proceedings of Hamiltonian and Celestial Mechanics II, Cocoyoc, México, set/94), Adv.Series in Nonlinear Dynamics, World Scientific, Singapore, 225-236 (1996).
 
Time-dependent billiards.
J. Koiller, R. Markarian, S. Oliffson Kamphorst, S. Pinto-de-Carvalho; Nonlinearity,  8, 983-1003 (1995).
 
Twisted Classical Phase-spaces: a consequence of the quantum indistinguishability of interacting spins. S.Q.Pellegrino, K.Furuya, M.C.Nemes, S. Pinto de Carvalho; Europhysics Letters   27-1, 7-12 (1994).
 
Non-integrability of the 4-Vortex System.
J.Koiller, S. Pinto-de-Carvalho: Communications in Mathematical Physics,  120, 643-652 (1989).
 
On Aref's Vortex Motions with a Symmetry Center.
J.Koiller, S. Pinto-de-Carvalho, L.Oliveira, R.Rodrigues da Silva: Physica D   16 (1985)
 
Some Remarks about Homoclinic Points of Second Order Differential Equations.
R.Roussarie, S. Pinto-de-Carvalho; Lecture Notes in Mathematics,   1007, 88-95 (1981).